• Title/Summary/Keyword: Shewhart charts

Search Result 76, Processing Time 0.016 seconds

A Control Chart Method Using Quartiles for Asymmetric Distributed Processes (비대칭 분포를 따르는 공정에서 사분위수를 이용한 관리도법)

  • Park Sung-Hyun;Park Hee-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.81-96
    • /
    • 2006
  • This paper proposes a simple control chart method which can be practically used for asymmetric process data where the distribution is unknown. If we use the Shewhart type control charts which are based on normality assumption for the asymmetric process data, the type I error could increase as the asymmetry increases and the effectiveness of control chart to control variation decreases. To solve such problems, this paper suggests to calculate the control limits based on the quartiles. If we obtain the control limits by such quartile method, the type I error could decrease and it looks much more practical for asymmetric distributed process data.

A Survey on The Economic Design of Control Chart in Small Process Variation (미세공정변동에서 관리도의 경제적 설계를 위한 조사연구)

  • Kim, Jong-Gurl;Um, Sang-Joon;Kim, Hyung-Man
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.04a
    • /
    • pp.533-546
    • /
    • 2013
  • 이 논문은 미세공정변동에서 극소불량을 감지하는 관리도의 경제적 설계를 개발하기 위한 조사연구이다. 일반적인 관리도의 설계는 통계적 설계와 경제적 설계로 구분할 수 있다. 공정의 변동 원인에 따라 샘플의 간격(h), 샘플의 크기(n), 관리한계선(k) 등의 설계 모수를 최적접근방법으로 결정을 하는 경제적 설계의 모델을 조사하였다. 관리도의 경제적 설계는 공정의 관리이상상태를 효율적으로 감지하여 관리상태로 정상화 시키는 것에 대한 공정의 개선비용과 기대품질비용을 절약 할 수 있는 최적설계 방안이다. 그리고 Shewhart 관리도의 X-bar 통계량으로 극소불량을 검출 하는것에 한계가 있기 때문에 Zp 통계량과 분포를 설계하여 극소불량을 빠르게 감지할 수 있는 Zp 관리도의 설계를 적용하고, 미세공정변동을 정확하게 감지할 수 있는 CUSUM 관리도를 동시에 적용하였다. 따라서, 미세공정변동과 극소불량을 동시에 관리 할 수 있는 Zp-CUSUM 관리도의 통계적 설계 구조를 체계화 하였으며, 기존의 경제적 설계의 모델을 비교 분석하여 새로운 경제적 설계에 대한 모델을 제안하고자 한다.

  • PDF

Switching performances of multivarite VSI chart for simultaneous monitoring correlation coefficients of related quality variables

  • Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.451-459
    • /
    • 2017
  • There are many researches showing that when a process change has occurred, variable sampling intervals (VSI) control chart is better than the fixed sampling interval (FSI) control chart in terms of reducing the required time to signal. When the process engineers use VSI control procedure, frequent switching between different sampling intervals can be a complicating factor. However, average number of samples to signal (ANSS), which is the amount of required samples to signal, and average time to signal (ATS) do not provide any control statistics about switching performances of VSI charts. In this study, we evaluate numerical switching performances of multivariate VSI EWMA chart including average number of switches to signal (ANSW) and average switching rate (ASWR). In addition, numerical study has been carried out to examine how to improve the performance of considered chart with accumulate-combine approach under several different smoothing constant and sample size. In conclusion, process engineers, who want to manage the correlation coefficients of related quality variables, are recommended to make sample size as large and smoothing constant as small as possible under permission of process conditions.

Robust determination of control parameters in K chart with respect to data structures (데이터 구조에 강건한 K 관리도의 관리 모수 결정)

  • Park, Ingkeun;Lee, Sungim
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1353-1366
    • /
    • 2015
  • These days Shewhart control chart for evaluating stability of the process is widely used in various field. But it must follow strict assumption of distribution. In real-life problems, this assumption is often violated when many quality characteristics follow non-normal distribution. Moreover, it is more serious in multivariate quality characteristics. To overcome this problem, many researchers have studied the non-parametric control charts. Recently, SVDD (Support Vector Data Description) control chart based on RBF (Radial Basis Function) Kernel, which is called K-chart, determines description of data region on in-control process and is used in various field. But it is important to select kernel parameter or etc. in order to apply the K-chart and they must be predetermined. For this, many researchers use grid search for optimizing parameters. But it has some problems such as selecting search range, calculating cost and time, etc. In this paper, we research the efficiency of selecting parameter regions as data structure vary via simulation study and propose a new method for determining parameters so that it can be easily used and discuss a robust choice of parameters for various data structures. In addition, we apply it on the real example and evaluate its performance.

The effect of parameter estimation on $\bar{X}$ charts based on the median run length ($\bar{X}$ 관리도에서 런길이의 중위수에 기초한 모수 추정의 영향)

  • Lee, Yoojin;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1487-1498
    • /
    • 2016
  • In monitoring a process, in-control process parameters must be estimated from the Phase I data. When we design the control chart based on the estimated process parameters, the control limits are usually chosen to satisfy a specific in-control average run length (ARL). However, as the run length distribution is skewed when the process is either in-control or out-of-control, the median run length (MRL) can be used as alternative measure instead of the ARL. In this paper, we evaluate the performance of Shewhart $\bar{X}$ chart with estimated parameters in terms of the average of median run length (AMRL) and the standard deviation of MRL (SDMRL) metrics. In simualtion study, the grand sample mean is used as a process mean estimator, and several competing process standard deviation estimators are used to evaluate the in-control performance for various amounts of Phase I data.

Self-starting monitoring procedure for the dynamic degree corrected stochastic block model (동적 DCSBM을 모니터링하는 자기출발 절차)

  • Lee, Joo Weon;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2021
  • Recently the need for network surveillance to detect abnormal behavior within dynamic social networks has increased. We consider a dynamic version of the degree corrected stochastic block model (DCSBM) to simulate dynamic social networks and to monitor for a significant structural change in these networks. To apply a control charting procedure to network surveillance, in-control model parameters must be estimated from the Phase I data, that is from historical data. In network surveillance, however, there are many situations where sufficient relevant historical data are unavailable. In this paper we propose a self-starting Shewhart control charting procedure for detecting change in the dynamic networks. This procedure can be a very useful option when we have only a few initial samples for parameter estimation. Simulation results show that the proposed procedure has good in-control performance even when the number of initial samples is very small.