• Title/Summary/Keyword: Shells

Search Result 1,308, Processing Time 0.032 seconds

Study on bi-stable behaviors of un-stressed thin cylindrical shells based on the extremal principle

  • Wu, Yaopeng;Lu, Erle;Zhang, Shuai
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.377-384
    • /
    • 2018
  • Bi-stable structure can be stable in both its extended and coiled forms. For the un-stressed thin cylindrical shell, the strain energy expressions are deduced by using a theoretical model in terms of only two parameters. Based on the principle of minimum potential energy, the bi-stable behaviors of the cylindrical shells are investigated. The results indicate that the isotropic cylindrical shell does not have the second stable configuration and laminated cylindrical shells with symmetric or antisymmetric layup of fibers have the second stable state under some confined conditions. In the case of antisymmetric laminated cylindrical shell, the analytical expressions of the stability are derived based on the extremal principle, and the shell can achieve a compact coiled configuration without twist deformation in its second stable state. In the case of symmetric laminated cylindrical shell, the explicit solutions for the stability conditions cannot be deduced. Numerical results show that stable configuration of symmetric shell is difficult to achieve and symmetric shell has twist deformation in its second stable form. In addition, the roll-up radii of the antisymmetric laminated cylindrical shells are calculated using the finite element package ABAQUS. The results show that the value of the roll-up radii is larger from FE simulation than from theoretical analysis. By and large, the predicted roll-up radii of the cylindrical shells using ABAQUS agree well with the theoretical results.

Inelastic vector finite element analysis of RC shells

  • Min, Chang-Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-148
    • /
    • 1996
  • Vector algorithms and the relative importance of the four basic modules (computation of element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simultaneous equations, and calculation of stresses and strains) of a finite element computer program for inelastic analysis of reinforced concrete shells are presented. Performance of the vector program is compared with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector program is 34 for the element stiffness matrices calculation, 25.3 for the assembly of global stiffness matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on a Gray Y-MP. The overall speedup factor is 30.9. When the equation solver alone is vectorized, which is computationally the most intensive part of a finite element program, a speedup factor of only 1.9 is achieved. When the rest of the program is also vectorized, a large additional speedup factor of 15.9 is attained. Therefore, it is very important that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers. The vector finite element computer program for inelastic analysis of RC shells with layered elements developed in the present study enabled us to perform mesh convergence studies. The vector program can be used for studying the ultimate behavior of RC shells and used as a design tool.

Permeability and Shear Strength Characteristics of Oyster Shell-Sand Mixture for Application to SCP (모래다짐말뚝(SCP) 적용을 위한 굴패각.모래 혼합토의 투수 및 전단 강도 특성)

  • Yoon, Hyun-Suk;Lee, Ki-Ho;Park, Jun-Boum;Lee, Hyung-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.863-868
    • /
    • 2004
  • The use of oyster shells is proposed as a substitute construction material for geotechnical applications. To investigate recycling possibility as a substitute of sand compaction pile (SCP) for oyster shells, the geotechnical characteristics including permeability and shear strength of crushed oyster shell, sand and crushed oyster shell-sand mixted soil. Experimental results show that the crushed oyster shells are lighter than sand in weight, and have similar characteristics on permeability to sand. The results of direct shear test show that the measured value of friction angle ${\Phi}$ of crushed oyster shell was lager than that of sand. It would be expected that more angular particles (crushed oyster shells) would interlock more thoroughly than rounded particles (send).

  • PDF

Ecological Study on the Intertidal Zone around Cheju Island 1. Estimation of Plankton Production and Community Structure of Marine Shells - Community Structure of Molluscan Shells (제주도 조간대의 생태학적 기초연구 1. 플랑크톤에 의한 생산량추정 및 패류의 군집구조-패류의 군집구성)

  • 이정재;좌용우
    • The Korean Journal of Malacology
    • /
    • v.4 no.1
    • /
    • pp.17-29
    • /
    • 1988
  • The study had been carried out three times, from April 1987 for the purpose of analysis on the community structure and the distribution patterns of the Molluscan shells at the intertidal zone of Cheju Island. 1) The Molluscan shells collected and identified at all studied sites were composed of 3 classes, 10 orders, 23 families and 42 species.2) In all studied sites, individual numbers according to species were Nodilittorina exigua, Monodonta neritoides, Lunella coronata coreensis, Heminerita japonica in order. On the other hand, the dominant species of the rocky sits were N. exigua, M. neritoides and the rocky and silty-sand sites was Batillaris multiformis.3) In the vertical zonation, in the supralitorial zone, N. exigua was dominant species and the wpper-tidal zone, N. exigua, H. japonica and B. Multiformis were dominant species, but B. multiformis was dominant in the rocky and silty sand sites. In the middle tidal zone, M. neritodes, H. japonica, L. coronata coreensis were dominant and in the lower tidal zond, M. neritodes, L. coronata coreensis, Liolophura japonica were dominant.4)In the analysis on community of Molluscan shells, Chagwi, Pyoson an dAewol sites were more diverse than other sites in the species diversity and environmental inhibits were also favorable.5) Community similarities among the studied sites based on the similarities values were divided into two groups according to the difference of the ground: Hagwi, Chongdal and Sehwa sites group and the others sites group.

  • PDF

Morphologies of Aragonite Synthesized from Scallop Shells and Lime Stones by Successive Reaction

  • Keiko Sasaki;Hiroyuki Kobayashi;Yoo, Kyoung-Keun;Masami Tsunekawa
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.331-336
    • /
    • 2001
  • Aragonite type of precipitated calcium carbonate was synthesized by the successive reaction with hybridization of waste scallop shells with limestone. In the first step, carbonation was performed by using calcined limestone with low brightness, followed by the additional carbonation using calcined-hydrous scallop shells with high brightness. The temperature and the amount ratio of calcined limestone to calcined-hydrous scallop shells were examined as parameters in the experimental conditions. The products were characterized by XRD, SEM. in addition to measurements of brightness index. the specific surface area, and bulk density. The amount ratio of limestone to scallop shell affected not only the brightness but also morphologies of products. The increase in relative amounts of limestone leads to decrease in brightness and bumpy surface of particles. High temperature reaction produces aragonite particles with longer sizes and higher bulk densities. This study has made an attempt to establish the synthesis of aragonite with high brightness and high strength by utilization of waste scallop shells.

  • PDF

Three-dimensional Vibration Analysis of Thick, Complete Conical Shells of Revolution (두꺼운 완전 원추형 회전셸의 3차원적 진동해석)

  • Sim Hyun-Ju;Kang Jae-Goon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.457-464
    • /
    • 2005
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution, Unlike conventional shell theories, which are mathematically two-dimensional (2-D). the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_{r},\;u_{z},\;and\;u_{\theta}$ in the radial, axial, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the conical shells are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of theconical shells. Novel numerical results are presented for thick, complete conical shells of revolution based upon the 3-D theory. Comparisons are also made between the frequencies from the present 3-D Ritz method and a 2-D thin shell theory.

Strength and Deformation Characteristic of Two-Phase Mixture Soil (폐기물을 포함한 이종혼합토의 강도·변형특성)

  • Lee, Ki-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.33-39
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, the shear characteristics of two-phase mixture soil with oyster shells were investigated with $\overline{CU}$ test. From various experiments, it was found that the increase of mixed ratio of oyster shells causes the shear strength of mixed soil. And this phenomenon not only depends on friction due to confining pressure such as pure clay but also is influenced by shaping skeleton of oyster shells. Also, it was discovered that there were many influences by clay-oyster shell mixture from the study of the secant modulus and dilatancy characteristics of mixed soil. In addition, variation of oyster shell skeleton during shearing stage is examined applying modifying coefficient concept.

  • PDF

Influence of initial imperfections on ultimate strength of spherical shells

  • Yu, Chang-Li;Chen, Zhan-Tao;Chen, Chao;Chen, Yan-ting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.473-483
    • /
    • 2017
  • Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.

Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.295-303
    • /
    • 2018
  • The semi-analytical method to study the nonlinear dynamic behavior of simply supported spiral stiffened functionally graded (FG) cylindrical shells subjected to an axial compression is presented. The FG shell is surrounded by damping and linear/nonlinear elastic foundation. The proposed linear model is based on the two-parameter elastic foundation (Winkler and Pasternak). A three-parameter elastic foundation with hardening/softening cubic nonlinearity is used for nonlinear model. The material properties of the shell and stiffeners are assumed to be FG. Based on the classical plate theory of shells and von $K{\acute{a}}rm{\acute{a}}n$ nonlinear equations, smeared stiffeners technique and Galerkin method, this paper solves the nonlinear vibration problem. The fourth order Runge-Kutta method is used to find the nonlinear dynamic responses. Results are given to consider effects of spiral stiffeners with various angles, elastic foundation and damping coefficients on the nonlinear dynamic response of spiral stiffened simply supported FG cylindrical shells.

A fuzzy optimum design of axisymmetrically loaded thin shells of revolution

  • Kang, Moon-Myung;Mu, Zai-Gen;Kim, Seung-Deog;Kwun, Taek-Jin
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.277-288
    • /
    • 1999
  • This paper presents a fuzzy optimum design of axisymmetrically loaded thin shells of revolution. This paper consists of two parts, namely: an elastic analysis using the new curved element for finite element analysis developed in this study for axisymmetrically loaded thin shells of revolution, and the volume optimization on the basis of results evaluated from the elastic analysis. The curved element to meridian direction is used to develop the computer program. The results obtained from the computer program are compared by exact solution of each analytic example. The fuzzy optimizations of thin shells of revolution are done using [Model 2] which is in the form of a conventional crisp objective function and constraints with non-membership function, and nonlinear optimum GINO (General Interactive Optimizer) programming. In this paper, design examples show that the fuzzy optimum designs of the steel water tank and the steel dome roof could provide significant cost savings.