• Title/Summary/Keyword: Shellfish Poisoning

Search Result 75, Processing Time 0.026 seconds

Temporal Changes in Abundances of the Toxic Dinoflagellate Alexandrium minutum (Dinophyceae) in Chinhae Bay, Korea

  • Park, Tae-Gyu;Kang, Yang-Soon
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1331-1338
    • /
    • 2009
  • Marine dinoflagellate Alexandrium minutum producing paralytic shellfish toxins is responsible for paralytic shellfish poisoning (PSP). To investigate its temporal distributions in Chinhae Bay where PSP occurs annually, SYBR Green I based A. minutum-specific real-time PCR probe was developed on the LSU rDNA region. Assay specificity and sensitivity were tested against related species, and its specificity was further confirmed by sequencing of field-derived samples. Ten months field survey in 2008 (a total 100 surface water samples) by using the real-time PCR probe showed that A. minutum was detected at very low densities of 1-4 cells $L^{-1}$ in May and June being spring in Chinhae Bay, Korea.

Feasibility Study for Removal of Red Tide by Batch Fed Electron Beam Irradiation (회분식 전자빔 조사에 의한 적조제거 특성 연구)

  • Kang, Ho;Lim, Seon-Ae;Jeong, Ji-Hyun;Kim, Yu-Ri;Han, Beom-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • This study was carried out to assess the feasibility of the electron beam irradiation as a mean of red tide control in coastal water. Prorocentrum minimum, Prorocentrum micans, Cochlodinium polykrikoides, Heterosigma akashiwo, Alexnadrium catenella were selected and cultured for experiments, and red tide occurring in Tongyeong(2007. 8. 15) was also tested under the same conditions. The irradiation dose were 1 kGy, 2 kGy, 4 kGy and 8 kGy. The result showed 50~65% extinction in red tide cells was observed right after irradiation dose of 1 kGy and 86~97% within 1 day after irradiation, compared with control. Chlorophyll-a concentration of red tide was reduced by 50~64% immediately and it was drastically reduced up to 86~97% 1 day after irradiation. When the culture was irradiated at 1 kGy, 28~47% of s-protein was released immediately, and 77~138% was released 1day after irradiation. 77~212% of s-carbohydrate was excreted after 1 day while 16~45% of s-carbohydrate was excreted immediately. A transmission electron microscope(TEM) observation for the irradiated red tide revealed that the cell was destroyed and intracellular biopolymeric substance was leached out from the damaged cell as a result of electron beam irradiation. These results imply that electron beam irradiation is enable to control red tide by flocculation with extracellular biopolymer. The paralytic shellfish poisoning(PSP) toxin contents produced by Alexandrium catenella was decreased 48% by 1 kGy of electron beam irradiation compared with the unirradiated cells. As a result, electron beam irradiation was effective for detoxication as well as destruction of red tide.

Minamata Disease and the Mercury Pollution of the Globe

  • Harada Masazumi
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.451-456
    • /
    • 2005
  • Minamata disease made its first appearance in the world at Minamata City, Kumamoto Prefecture, in May 1956. In 1962 methyl mercury poisoning through the placenta was found for the first time in the world. This was called congenital Minamata disease. In all cases the clinical symptoms were consistent with those of cerebral palsy. The time and place of outbreak were the same as those for Minamata disease. Their mothers had eaten fish and shellfish during pregnancy. The principal symptoms of congenital Minamata disease are mentalretardation ($100\%$); primitive reflexes ($100\%$); disturbance of coordination ($100\%$); dysarthria ($100\%$); limb deformation (100%); growth disorders ($100\%$); nutritional disorders ($100\%$); chorea-athetose ($95\%$); and hypersalivation ($95\%$). However, today, when the world is polluted by mercury in various places and at various levels, the data we need is not represented by those severe cases, but rather by the chronic milder type. Even in Minamata, the issue of Minamata disease has not been resolved. And likewise, on a global scale the problem of Minamata disease is not yet over.

Paralytic Shellfish Poisoning Toxicity of Shellfishes, Sold at Fish Markets in Seoul (서울시내 수산시장에서 유통되고 있는 패류의 마비성 패독 함량)

  • 함희진;차영섭;이재인;정윤태;유영아;서병태
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.3
    • /
    • pp.247-250
    • /
    • 2001
  • In order to investigate the distribution of paralytic shellfish poison, we examined the toxicity during from February to October in 2000. Of 591 shellfish samples, 17(2.88%) samples were detected. Scapgarca broughtonii was highest collected 14.29%(2/14). In the monthly detection rate of PSP, April was hitest 13.3%(8/60), in the regional collecting rate, Cheon-nam coastal area was highest 3.82%(10/262), and in cases of imported area, China was 8.3%(1/12). Imported area as well as domestic area samples should be strengthen to examine enduringly.

  • PDF

Paralytic Shellfish Toxin Composition and Intoxication of Scallops (Patinopecten yessoensis) in Kangnung Coastal Waters of East Sea in 1997 (강릉 연안산 참가리비의 PSP 독화 및 독조성)

  • JEON Joong-Kyun;HAN Myung-Soo;PARK Young Je;YOON Moon-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.813-816
    • /
    • 1998
  • Toxicity and toxin compositions of wild and cultured scallops (Patinopecten yessoensis), collected from coastal waters near Kangnung of East Sea, were examined from January to June, 1997. By mouse bioassay methods, the toxicity was detected with low toxicity of $2 MU\;g^{-1}$, and paralytic shellfish poisoning (PSP) toxin was detected in the specimens from 30 April to 15 May by HPLC. GTXs and PXs were identified as the major toxin components.

  • PDF

Molecular Identification of the Toxic Alexandrium tamiyavanichii (Dinophyceae) by the Whole-cell FISH Method

  • Kim Choong-Jae;Yoshimatsu Sada-Akfi;Sako Yoshihiko;Kim Chang-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.4
    • /
    • pp.175-183
    • /
    • 2004
  • The dinoflagellate Alexandrium tamiyavanichii Balech, a producer of toxins causing paralytic shellfish poisoning (PSP), has recently been considered as one of main organisms responsible for toxication of shellfish in Japan. In this study, A. tamiyavanichii was subjected to a molecular phylogenetic analysis inferred from 28S rDNA D1-D2 sequences and a species-specific LSU rRNA-targeted oligonucleotide DNA probe was designed to identify A. tamiyavanichii using the whole cell-FISH (fluorescence in situ hybridization). The sequences of the 28S rDNA D1-D2 region of A. tamiyavanichii showed no difference from A. cohorticular AF1746l4 (present name A. tamiyavanichii) and formed a distinct clade from the 'tamarensis species complex'. The probe, TAMID2, reacted specifically with A. tamiyavanichii cultured cells, without any cross-reaction with other species belonging to the same genus, including A. tamarense, A. catenella, A. affine, A. fraterculus, A. insuetum and A. pseudogonyaulax. In a test of cross-reactivity with a field sample, TAMID2 reacted consistently with only A. tamiyavanichii, indicating that the present protocol involving the TAMID2 probe might be useful for detecting toxic A. tamiyavanichii in a simple and rapid manner.

Evaluation of Sanitary Safety for Shellfish in Hansan·Geojeman, Korea (경남 한산·거제만해역에서 생산된 패류의 위생학적 안전성 평가)

  • Ha, Kwang-Soo;Lee, Ka-Jeong;Jeong, Yeon-Jung;Mok, Jong-Soo;Kim, Poong-Ho;Kim, Yeon-Kye;Lee, Hee-Jung;Kim, Dong-Wook;Son, Kwang-Tae
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.404-411
    • /
    • 2018
  • To evaluate bacteriological and toxicological safety hygienic indicator bacterium and paralytic and diarrhetic shellfish toxins in the shellfish produced in Hansan Geojeman 2013-2017 were investigated. Fecal coliforms were < 18~330 MPN/100 g in 404 oyster samples. But all samples tested, did not exceed 230 E. coli MPN/100 g. Geometric mean of E. coli for oyster samples collected during major shellfish production period was 24.3 MPN/100 g, considerde stable results. Bacteriological quality of oysters collected from Hansan Geojeman meets the standard value based on shellfish hygiene of the Food Sanitation Act of Korea and also meets Grade A, according to classification of shellfish harvesting areas of the European Union. For toxicological evaluation of Hansan Geojeman, 532 oyster samples and 268 mussel samples as an indicator, were analyzed. Paralytic shellfish toxins were detected in the range of 0.42~2.29 mg/kg in eight mussel samples, and exceeded criteria in three samples from early to late April 2013. Diarrhetic shellfish toxin was detected in three of 120 samples, but it was revealed to be under regulation value (0.16 mg Okadaic Acid equ./kg). As a result of toxicological evaluation, paralytic and diarrhetic shellfish toxins were not detected in oyster samples, but it was found that mussel as an indicator species, exceeded the threshold value of paralytic shellfish toxin. Accordingly, sanitary surveys were continuously requested for food safety management of shellfish.

Methylmercury Exposure and Health Effects

  • Hong, Young-Seoub;Kim, Yu-Mi;Lee, Kyung-Eun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.353-363
    • /
    • 2012
  • Methylmercury is a hazardous substance that is of interest with regard to environmental health, as inorganic mercury circulating in the general environment is dissolved into freshwater and seawater, condensed through the food chain, ingested by humans, and consequently affects human health. Recently, there has been much interest and discussion regarding the toxicity of methylmercury, the correlation with fish and shellfish intake, and methods of long-term management of the human health effects of methylmercury. What effects chronic exposure to a low concentration of methylmercury has on human health remains controversial. Although the possibility of methylmercury poisoning the heart and blood vessel system, the reproductive system, and the immune system is continuously raised and discussed, and the carcinogenicity of methylmercury is also under discussion, a clear conclusion regarding the human health effects according to exposure level has not yet been drawn. The Joint FAO/WHO Expert Committee on Food Additives proposed to prepare additional fish and shellfish intake recommendations for consumers based on the quantified evaluation of the hazardousness of methylmercury contained in fish and shellfish, methylmercury management in the Korea has not yet caught up with this international trend. Currently, the methylmercury exposure level of Koreans is known to be very high. The starting point of methylmercury exposure management is inorganic mercury in the general environment, but food intake through methylation is the main exposure source. Along with efforts to reduce mercury in the general environment, food intake management should be undertaken to reduce the human exposure to methylmercury in Korea.

Tissue Biosensor for Determination of $Na^{+}$ Channel Blocker in Chinese Drug and Seaweed (Porphyra yezoensis Ueda) (조직 센서를 이용한 한약재료 및 해조류의 $Na^{+}$ 챈널 차단물질 측정)

  • 천병수;류종수;검목건;도범열생
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 1998
  • Tissue biosensor for mearsuring sodium channel blockers, such tetrodotoxin(TTX), saxitoxin (STX) and paralytic shellfish poisoning(PSP) consisted of frog bladder membrane, and $Na^{+}$ electrode. The proposed biosensor was applied to determine Chinese drug and dry or wet Porphyra yezonesis $Na^{+}$ channel blockers below the detection limit of the standard mouse bio-assay while the observed detection limit didn't cause human poisoning. The proposed biosensor system may be used for future $Na^{+}$ channel blockers monitoring within the marine environment.

  • PDF

Evaluation of the Bacteriological and Toxicological Safety for the Shellfish Growing Area in the Kamakman Area, Korea (가막만해역 패류의 세균학적·독물학적 안전성 평가)

  • Ha, Kwang-Soo;Shin, Soon-Bum;Lee, Ka-Jeong;Jeong, Sang-Hyeon;Oh, Eun-Gyoung;Lee, Hee-Jung;Kim, Dong-Wook;Kim, Yeon-Kye
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.542-549
    • /
    • 2017
  • To evaluate bacteriological and toxicological safety, the hygienic indicator bacterium and paralytic and diarrhetic shellfish toxins in the shellfish produced in the Kamakman Area from 2012 to 2016 were investigated. Fecal coliforms and E. coli of all 194 oyster samples tested did not exceed 230 MPN/100 g. The geometric mean of the fecal coliform analyzed with the oyster samples of harvesting period was 19.6 MPN/100 g, which was more stable than the non-harvesting period (26.5 MPN/100 g). For the toxicological evaluation of the Kamakman Area, 77 oyster samples and 350 mussel samples as an indicator were analyzed. Paralytic shellfish toxins were detected very low in the range of $40{\sim}46{\mu}g$/100 g in 13 mussel samples during late April and early June, but not in oyster samples. Diarrhetic shellfish toxin was detected in 2 of 180 samples, but it was found to be below the regulation value (0.16 mg OA equ./kg). Based on the bacteriological studies, it was confirmed that the shellfish produced in Kamakman area meets the standard of shellfish hygiene of the Food Sanitation Act and meets the Grade A of the shellfish production area of EU. As the results of the paralytic and diarrhetic shellfish toxin evaluation, it was confirmed that the Kamakman Area is also toxicologically safe for shellfish production.