• Title/Summary/Keyword: Shell theory

Search Result 522, Processing Time 0.028 seconds

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

Dynamic Modeling, Active Vibration Controller Design and Experiments For Cylindrical Shell equipped with MFC Actuators (MFC 작동기가 부착된 실린더 쉘 구조물의 동적 모델링과 능동진동제어기 설계 및 실험)

  • Kwak, Moon-K.;Jung, Moon-San
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.565-573
    • /
    • 2007
  • This paper is concerned with the dynamic modeling, active vibration controller design and experiments for a cylindrical shell equipped with MFC actuators. The dynamic model was derived by using Rayleigh-Ritz method based on Donnel-Mushtari shell theory. The actuator and sensors for the MFC actuator equations were derived based on pin-force model. The equations of motion were then reduced to modal equations of motion by considering the modes of interest. The sensor equations were also converted to a reduced form. An aluminum shell was fabricated to demonstrate the effectiveness of modeling and control techniques. The boundary conditions at both ends of the shell were assumed to be shear diaphragm. Theoretical natural frequencies were calculated and compared to experimental result. It was observed that the theoretical result is in good agreement with experimental result for the first two modes. The multi-input and multi-output positive position feedback controller, which can cope with first two modes, was then designed based on the blockinverse theory and implemented using DSP. It was found from experiment that vibrations can be successfully suppressed.

  • PDF

Buckling Behaviors of Single-Layered Lattice Dome under Radial Uniform Loads (등분포 중심축 하중을 받는 단층래티스돔의 좌굴거동)

  • Kim, Choong-Man;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper presented the nonlinear behaviors of the single-layered lattice dome, which is widely used for the long-span structure system. The behaviors were analysed through the classical shell buckling theory as the single-layered lattice dome behaves like continum thin shell due to its geometric characteristics, and finite element analysis method using the software program Nastran. Shell buckling theory provides two types of buckling loads, the global- and member buckling, and finite element analysis provides the ultimate load of geometric nonlinear analysis as well as the buckling load of Eigen value solution. Two types of models for the lattice dome were analysed, that is rigid- and pin-jointed structure. Buckling load using the shell buckling theory for each type of lattice dome, governed by the minimum value of global buckling or member buckling load, resulted better estimation than the buckling load with Eigen value analysis. And it is useful to predict the buckling pattern, that is global buckling or member buckling.

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.

Wave propagation along protein microtubule: Via strain gradient and orthotropic elastic model

  • Muhammad Taj;Mohammad Amien Khadimallah;Shahzad Ali Chattah;Ikram Ahmad;Sami Alghamdi;Muzamal Hussain;Rana Muhammad Akram Muntazir;Faisal Al-Thobiani;Muhammad Safeer;Muhammad Naeem Mohsin;Faisal Mehmood Butt;Zafer Iqbal
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.243-254
    • /
    • 2023
  • Microtubules in the cell are influenced by internal and external stimulation and play an important part in conveying protein substances and in carrying out medications to the intended targets. Waves are produced during these functions and in order to control the biological cell functions, it is important to know the wave velocities of microtubules. Owing to cylindrical shell shaped and mechanically elastic and orthotropic, cylindrical shell model based on gradient elasticity theory has been used. Wave velocities of the protein microtubule are carried out by considering Love's thin shell theory and Navier solution. Also the effect of size parameter and other variables on the results are investigated.

Noise and Vibration Analysis of a cylindrical shell by controlling ER mount (ER 마운트 제어에 의한 원통쉘의 진동소음 해석)

  • Jung, Woo-Jin;Jung, Weui-Bong;Seo, Young-Soo;Cho, Hyun-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.459-463
    • /
    • 2002
  • ER mount can be used instead of rubber mount in cylindrical shell to improve the vibration and noise performance. The noise radiated by cylindrical shell will be reduced by reducing the force transmitted to the cylindrical shell through ER mount. In this paper LQ control theory is used to reduce the transmitted force to the cylindrical shell. The finite element method of cylindrical shell is formulated by NASTRAN and its vibrating shape is calculated in frequency domain. The noise radiated from the cylindrical shell is calculated by the use of SYSNOISE, the boundary element CAE tool. The vibration of the cylindrical shell and radiated acoustic pressure is compared in case of both controlled and uncontrolled ER mount.

  • PDF

Free Vibrations of Plates and Shells with an Isogeometric RM Shell Element

  • LEE, Sang Jin
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.65-74
    • /
    • 2016
  • Free vibration analysis of plates and shells is carried out by using isogeometric approach. For this purpose, an isogeometric shell element based on Reissner-Mindlin (RM) shell theory is developed. Non-uniform rational B-spline surface (NURBS) definition is introduced to represent the geometry of shell and it is also used to derive all terms required in the isogeometric element formulation. New anchor positions are proposed to calculate the shell normal vector. Gauss integration rule is used for the formation of stiffness and mass matrices. The proposed shell element is then used to examine vibrational behaviours of plate and shell structures. From numerical results, it is found to be that reliable natural frequencies and associated mode shapes can be predicted by the present isogeometric RM shell element.

Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.381-388
    • /
    • 2018
  • In this paper, forced vibration of micro cylindrical shell reinforced by functionally graded carbon nanotubes (FG-CNTs) is presented. The structure is subjected to transverse harmonic load and modeled by beam model. The size effects are considered based on strain gradient theory containing three small scale parameters. The mixture rule is used for obtaining the effective material properties of the structure. Based on sinusoidal shear deformation theory of beam, energy method and Hamilton's principle, the motion equations are derived. Applying differential quadrature method (DQM) and Newmark method, the frequency curves of the structure are plotted. The effect of different parameters including, CNTs volume percent and distribution type, boundary conditions, size effect and length to thickness ratio on the frequency curves of the structure is studied. Numerical results indicate that the dynamic deflection of the FGX-CNT-reinforced cylindrical is lower with respect to other type of CNT distribution.

Prediction of Deformation Mechanism and Fracture for an Auto-Part with Advanced High Strength Steel using Solid Element and Damage Theory (연속체요소 및 손상이론을 이용한 고강도강 차량부품의 변형기구와 파단 예측)

  • Kwak, J.H.;Yoon, S.J.;Kim, S.H.;Park, J.K.;Han, H.G.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.293-299
    • /
    • 2017
  • In this paper, finite element stamping analysis was carried out for the front lower arm to examine the applicability of solid element with damage theory to predict shear fracture phenomena induced by sheared edge as well as deformation mechanisms. Mechanical properties related to deformation and damage theory were determined from tensile test. Shear fracture was predicted by normalized Cockcroft-Latham model with initial imposition of the damage value along the sheared edge. Simulation results illustrated that the analysis with solid element and damage theory predicted edge profile, strain distribution, and forming load more accurately than the analysis with shell element. Simulation with solid element can also predict the shear fracture more exactly comparing to analysis with shell element and forming limit curve.

Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.527-546
    • /
    • 2018
  • This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes (CNTs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load. Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration effect. The motion equations are derived using Hamilton's principle and the differential quadrature method (DQM) is employed to solve them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of system decreases while considering the CNTs agglomeration effect has an inverse effect.