• Title/Summary/Keyword: Shell percent

Search Result 72, Processing Time 0.02 seconds

HERITABILITIES AND GENETIC CORRELATIONS OF EGG QUALITY TRAITS IN TAIWANS'S LOCAL CHICKEN

  • Chen, C.F.;Lee, Y.P.;Lee, Z.H.;Huang, S.Y.;Huang, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.3
    • /
    • pp.433-440
    • /
    • 1993
  • Means and standard errors of 285 Taiwan's local chicken and 429 Single Comb White Leghorn pullets at 35 wk of age were: egg weight (g) $48.3{\pm}0.3$, $54.6{\pm}0.3$, shell index $73.39{\pm}0.26$, $73.20{\pm}0.18$, shell color $15.23{\pm}0.40$, $0.88{\pm}0.27$, shell whiteness $72.61{\pm}0.57$, $90.00{\pm}0.35$, shell strength ($kg/cm^2$) $3.77{\pm}0.07$, $3.35{\pm}0.05$, shell thickness (mm) $0.38{\pm}0.003$, $0.38{\pm}0.002$, Haugh units $85.26{\pm}0.50$, $91.81{\pm}0.38$ and yolk percent (%) $30.17{\pm}0.18$, $27.32{\pm}0.16$ respectively. Theestimated heritabiliities of Taiwan's local chicken based on sire and dam components of variance were as follows: egg weight 0.20, shell index 0.1, shell color 0.87, shell whiteness 0.79, shell strength 0.37, shell thickness 0.14, Haugh units 0.24 and yolk percent 0.16. Genetic correlations based on sire and dam components of variance and covariance were also estimated. Generically, the shell index was positively correlated with egg weight, shell strength and yolk percent, and egg weight was negatively correlated with shell thickness, Haugh unit and yolk percent.

Correlation among Shell Percent, Cocoon Yield and Reeling Parameters of Multi × Bi Cocoons under Different Agro-Climatic Conditions of West Bengal, India

  • Chanda, Subhra;Saha, Lal Mohan;Das, Nirvan Kumar;Kar, Niharendu Bikash;Bindroo, Bharat Bhusan
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.74-80
    • /
    • 2013
  • Three new Multi ${\times}$ Bi combinations M.Con.4 ${\times}$ (SK6 ${\times}$ SK7), M.Con.4 ${\times}$ NB4D2 and Nistari ${\times}$ (SK6 ${\times}$ SK7) were studied in five seasons i.e. during the period of $18^{th}$ June - $12^{th}$ July, $30^{th}$ August - $23^{rd}$ September, $3^{rd}$ November - $2^{nd}$ December, $29^{th}$ January- $2^{nd}$ March and $30^{th}$ March-$25^{th}$ April with one control Nistari ${\times}$ NB4D2 considering nine reeling characteristics along with shell percent and cocoon yield per 100 disease free layings (DFLs) to establish the seasonal effect on all the parameters. Results reveal that all the characters performed well in November-December. Highest yield per 100 DFLs was recorded during November-December in all combinations showing >60 kg yield. Higher correlation of yield/100 DFLs with filament length, non-breakable filament length, denier, raw silk percent, reelability percent and recovery percent was recorded in all combinations of Multi ${\times}$ Bi considered in this study. Variability observed among four combinations indicates the effect of different temperature and humidity of different seasons on expression of different traits. The results indicate that there is significant relationship of raw silk percent with reelability percent, recovery percent and evenness. Reelability percent showed higher correlation with recovery percent. It was observed that neatness was positively correlated with evenness. The overall performance of the newly evolved combinations with regard to productivity and reeling characteristics is discussed emphasizing their utilization at commercial level.

Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution

  • Shokravi, Maryam;Jalili, Nader
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.381-395
    • /
    • 2017
  • Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. Employing first order shear deformation theory (FSDT), the motion equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be increases.

Mechanical properties of top neck mollusks shell nano composite in different environmental conditions

  • Masir, Amin Nouroozi;Darvizeh, Abolfazl;Zajkani, Asghar
    • Advances in materials Research
    • /
    • v.7 no.3
    • /
    • pp.185-194
    • /
    • 2018
  • The mechanism of biological materials structure is very complex and has optimal properties compared to engineering materials. Top Neck mollusks shells, as an example of biological materials, have hierarchical structure, which 95 percent of its structure is Aragonite and 5 percent organic materials. This article detected mechanical properties of the Top Neck mollusks shell as a Nano composite using Nano-indentation method in different situations. Research findings indicate that mechanical properties of the Top Neck mollusks shell including elastic modulus and hardness are higher than a fresh one preserved in -50 centigrade and also a Top Neck mollusks shell preserved in environmental conditions. Nano-indentation test results are so close in range, overall, that hardness degree is 3900 to 5200 MPa and elastic modulus is 70 to 85 GPa.

Analysis of a cantilever cylindrical shell by an approximate thory (근사이론에 의한 Cantilever원통쉘의 해석)

  • ;;Lee, Young Shine
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.183-192
    • /
    • 1981
  • The present study gives an apprximate equation of circular cylindrical shell on the basis of Flugges's exact theory. The longitudinal bending moment .MU.$\_$x/ and circumferential strain .epsilon.$\_$.theta. are assumed to be small to be small and have been neglected. The governing equation of the cylindrical shell, which is generaly presented as 8th order partial differential equation, is reduced into a 4th order partial differential equation for axial coordinate. To verify the validity and accuracy of this approximate theory, the cantilever cylindrical shell subjected to a concentrated load is analyzed. The maximum errors of longitudinal stress and deflection are about 10 percent compared with the analysis by flugge's theory and are about 15 percent with experimental results.

The Carbonate Beach Sediments Along the Geumgeri Goast, Jin Island, Korea

  • Park, Yong Ahn
    • 한국해양학회지
    • /
    • v.10 no.2
    • /
    • pp.45-50
    • /
    • 1975
  • Over 50 carbonate samples were collected from the Geumgeri coast, Jin Island Textural characters, percent calcium carbonate and nature of the carbonate sediment were determined. Apparently the carbonate beach sediments were derived from the adjacent nearshore. The carbonate sediments contain over 90 percent of molluscan sheel particles, especially oyster shell fragments. The volumetric contribution of the shell fragment to the carbonate sediments is so large that the pre-existed oyster-reef like banks in the nearshore off the Geumgeri coast, Jin Island represent a spectacular example of carbonate sedimentary processes.

  • PDF

Pressure analysis in grouting and water pressure test to achieving optimal pressure

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid;Kolahchi, Reza
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.685-699
    • /
    • 2017
  • In order to determine the rate of penetrability, water pressure test is used before the grouting. One of the parameters which have the highest effect is pressure. Mathematical modeling is used for the first time in this study to determine the optimum pressure. Thus, the joints that exist in the rock mass are simulated using cylindrical shell model. The joint surroundings are also modeled through Pasternak environment. In order to validate the modeling, pressure values obtained by the model were used in the sites of Seymareh and Aghbolagh dams and the relative error rates were measured considering the differences between calculated and actual pressures recorded in these operations. In water pressure test, in Seymareh dam, the error values were equal to 4.75, 3.93, 4.8 percent and in the Aghbolagh dam, were 22.43, 5.22, 2.6 percent and in grouting operation in Seymareh dam were equal to 9.09, 32.50, 21.98, 5.57, 29.61 percent and in the Aghbolagh dam were 2.96, 5.40, 4.32 percent. Due to differences in rheological properties of water and grout and based on the overall results, modeling in water pressure test is more accurate than grouting and this error in water pressure test is 7.28 percent and in grouting is 13.92 percent.

Buckling of FGM elliptical cylindrical shell under follower lateral pressure

  • Moradi, Alireza;Poorveis, Davood;Khajehdezfuly, Amin
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.175-191
    • /
    • 2022
  • A review of previous studies shows that although there is a considerable difference between buckling loads of structures under follower and non-follower lateral loads, only the buckling load of FGM elliptical cylindrical shell under non-follower lateral load was investigated in the literature. This study is the first to obtain the buckling load of elliptical FGM cylindrical shells under follower lateral load and also make a comparison between buckling loads of elliptical FGM cylindrical shells under follower and non-follower lateral loads. Moreover, this research is the first one to derive the load potential function of elliptical cylindrical shell. In this regard, the FGM cylindrical elliptical shell was modeled using the semi-analytical finite strip method and based on the First Shear Deformation Theory (FSDT). The shell is discretized by strip elements aligned in the longitudinal direction. The Lagrangian and harmonic shape functions were considered in the circumference and longitudinal directions, respectively. The buckling pressure of the shell under follower and non-follower lateral loads was obtained from eigenvalue problem. The results obtained from the model were compared with those presented in the literature to evaluate the validity of the model. A comparison index was defined to compare the buckling loads of the shell under follower and non-follower lateral load. A parametric study was carried out to investigate the effects of material properties and shell geometry characteristics on the comparison index. For the elliptical cylindrical shells with length-to-radius ratio greater than 16 and major-to-minor axis ratio greater than 0.6, the comparison index reaches to more than 20 percent which is significant. Moreover, the maximum difference is about 30 percent in some cases. The results obtained from the parametric study indicate that the buckling load of long elliptical cylindrical shell under non-follower load is not reliable.

Classical shell theory for instability analysis of concrete pipes conveying nanofluid

  • Keikha, Reza;Heidari, Ali;Hosseinabadi, Hamidreza;Haghighi, Mohammad Salkhordeh
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2018
  • This paper deals with the instability analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The fluid is mixed by $AL_2O_3$ nanoparticles where the effective material properties of fluid are obtained by mixture rule. The applied force by the internal fluid is calculated by Navier-Stokes equation. The structure is simulated by classical cylindrical shell theory and using energy method and Hamilton's principle, the motion equations are derived. Based on Navier method, the critical fluid velocity of the structure is calculated and the effects of different parameters such as fluid velocity, volume percent of nanoparticle in fluid and geometrical parameters of the pipe are considered. The results present that with increasing the volume percent of nanoparticle in fluid, the critical fluid velocity increase.

Effects of Eggshell Pigmentation and Egg Size on the Spectral Properties and Characteristics of Eggshell of Meat and Layer Breeder Eggs

  • Shafey, T.M.;Al-mohsen, T.H.;Al-sobayel, A.A.;Al-hassan, M.J.;Ghnnam, M.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.297-302
    • /
    • 2002
  • The effects of eggshell pigmentation and egg size (medium and large) on the spectral properties and characteristics of eggshells were examined in eggs from two genetic groups of breeder flocks. Birds from meat (Hybro, pigmented eggshell, PES) and layer (Leghorn, non-pigmented eggshell, NPES) at 40 and 46 weeks of age, respectively, were used. Measurements of per cent shell (PS), shell thickness (ST), shell volume (SV), shell density (SD), egg shell conductance (EC) and physical dimensions of eggs were made. The spectral properties of eggshells were measured over the wavelength (WL) range of 200 to 1,100 nm. Eggshell absorbed approximately 99.8 percent of the light and transmitted only about 0.12 percent with a maximum light transmission at the near-infra-red region of about 1075 nm. It attenuated shorter WL and transmitted longer WL. Eggshell pigmentation and egg size influenced light transmission into the egg. The NPES had higher EC and transmission of light and lower PS and SD than those of the PES. Large size eggs had higher EC, SD, SV, transmission of light and egg physical dimensions than those of medium size eggs. It is concluded that genetic make up of birds and egg size influenced eggshell characteristics including EC and that, as a consequence, the difference in the spectral properties of eggshells. The pigmentation of eggshell influenced the amount and WL transmitted into the egg. The size and EC of eggs influenced the amount of light transmitted through the eggshell. EC is a good indicator for the ability of eggshell to transmit light.