• 제목/요약/키워드: Shell mode

검색결과 283건 처리시간 0.022초

재해석 기법에 의한 충격 하중을 받는 쉘 구조물의 동적 응답 해석에 관한 연구 (A Study on the Dynamic Response Analysis of Shell Structure with Impulsive Load by Reanalysis Technique)

  • 배동명
    • 수산해양기술연구
    • /
    • 제29권2호
    • /
    • pp.132-151
    • /
    • 1993
  • The proposed method in this paper. termed the substructural reanalysis technique, utilizes the computational merits of the component mode synthesis technique and of reanalysis technique for the design sensitivities of the dynamic characteristics of substructurally combined structure. It is shown that the dynamic characteristics of the entire structure can be obtained by synthesizing the substructural eigensolution and the characteristics of the eigensolution for the design variables of the modifiable substructure. In this paper , the characteristics of the eigenvalue problems obtained by this proposed method are compared to exact eigensolution in terms of accuracy and computational efficiency. and the advantage of this proposed method as compared to the direct application of the whole structure and experimental results is demonstrated through examples of numerical calculation for the dynamic characteristics (natural frequencies and mode shapes) of a flexible vibration of thin cylinderical shell with branch shell under 2-end fixed positions, boundary condition. Thin cylinderical shell of overall length 1280mm, external diameter 360mm, thickness 3mm with branch shell is made of mild steel. The load condition for dynamic response in this paper is impulsive load of which magnitude is 10kgf, which have short duration of 0.1 sec. and time interval applied to calculate. $\Delta$T is 1.0$\times$10 super(-4) seconds.

  • PDF

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.

기초구조물로서 얇은 쉘 구조물의 지진응답 (Seismic Response on Thin Shell as Structural Foundation)

  • 이휘민;아지자 압둘 나살;김재열
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.31-41
    • /
    • 2024
  • This study aims to investigate the seismic response of a large span thin shell structures and assess their displacement under seismic loads. The study employs finite element analysis to model a thin shell structure subjected to seismic excitation. The analysis includes eigenvalue analysis and time history analysis to evaluate the natural frequencies and displacement response of the structure under seismic loads. The findings show that the seismic response of the large span thin shell structure is highly dependent on the frequency content of the seismic excitation. The eigenvalue analysis reveals that the tenth mode of vibration of the structure corresponds to a large-span mode. The time history analysis further demonstrates, with 5% damping, that the displacement response of the structure at the critical node number 4920 increases with increasing seismic intensity, reaching a maximum displacement of 49.87mm at 3.615 seconds. Nevertheless, the maximum displacement is well below the allowable limit of the thin shell. The results of this study provide insight into the behaviour of complex large span thin shell structures as elevated foundations for buildings under seismic excitation, based on the displacement contours on different modes of eigenvalues. The findings suggest that the displacement response of the structure is significant for this new application of thin shell, and it is recommended to enhance the critical displacement area in the next design phase to align with the findings of this study to resist the seismic impact.

Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads

  • Ahmadi, Habib;Foroutan, Kamran
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.643-655
    • /
    • 2020
  • Active control of nonlinear vibration of stiffened functionally graded (SFG) cylindrical shell is studied in this paper. The system is subjected to axial and transverse periodic loads in the presence of thermal uncertainty. The material composition is considered to be continuously graded in the thickness direction, also these properties depend on temperature. The relations of strain-displacement are derived based on the classical shell theory and the von Kármán equations. For modeling the stiffeners on the cylindrical shell surface, the smeared stiffener technique is used. The Galerkin method is used to discretize the partial differential equations of motion. Some comparisons are made to validate the SFG model. For suppression of the nonlinear vibration, the linear and nonlinear control strategies are applied. For control objectives, the piezoelectric actuator is attached to the external surface of the shell and the thin ring piezoelectric sensor is attached to the middle internal surface of shell. The effect of PID, feedback linearization and sliding mode control on the suppression of vibration for SFG cylindrical shell is presented.

구형 캡이 결합된 외팔 원통 쉘의 고유진동 해석 (Free Vibration Analysis of a Circular Cylindrical Shell with a Spherical Cap)

  • J.S. Yim;D.S. Sohn
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.355.2-355
    • /
    • 2002
  • The receptance method was applied for the analysis of a cylindrical shell with a spherical cap attached at an arbitrary axial position of the shell. The boundary condition of the shell considered here was clamped-free condition. Before the analysis of the shell/spherical cap combined structure, natural frequencies of the cap and the shell were calculated separately and then they were used in the calculation of the frequencies of the combined structure by the receptance method. (omitted)

  • PDF

부분구조합성법을 이용한 컴프레서 쉘의 동특성 규명 및 개선에 관한 연구 (A Study on the Identification & Improvement of Dynamic Characteristics of Compressor Shell by Substructure Synthesis Method)

  • 김동규;김종배;고상철;한광희;오재응
    • 한국음향학회지
    • /
    • 제15권5호
    • /
    • pp.99-106
    • /
    • 1996
  • 컴프레서의 소음은 냉장고로부터 발생하는 전체 소음레벨중 높은 기여를 나타낸다. 그리고, 컴프레서로부터 방사되는 소음의 상당부분이 컴프레서 쉘의 진동에 의해 방사되는 소음이다. 본 연구에서는 컴프레서 쉘의 동특성을 규명하기 위하여 범용 구조해석 패키지인 MSC/NASTRAN을 이용하여 컴프레서 쉘을 여러 분계로 분리하여 해석한 뒤, 부분구조 합성법을 이용하여 전계의 동특성을 규명하였다. 그리고 각 분계의 변형 에너지와 운동에너지를 산정하여 각 분계가 전계에 기여하는 정도를 파악하였다. 컴프레서 소음에 가장 높은 영향을 미치는 1차모드를 고주파로 이동시키기 위하여, 1차 모드에 기여가 높은 분계의 질량과 강성을 변경하여 컴프레서 쉘의 동특성 개선 방향을 제시하였다.

  • PDF

선형적으로 두께가 변하는 원추형 셸의 진동특성 (Vibration Characteristics of Conical Shells with Linearly Varying Thickness)

  • 여동준;조인순
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.35-40
    • /
    • 2008
  • This paper deals with the free vibrations of conical shells with linearly variable thickness by the transfer influence coefficient method. The classical thin shell theory based upon the Flugge theory is assumed and the governing equations of a conical shell are written as a coupled set of first order matrix differential equations using the transfer matrix. The Runge-Kutta-Gill integration method is used to solve the governing differential equation. The natural frequencies and corresponding mode shapes are calculated numerically for the conical shells with linearly variable thickness and various boundary conditions at the edges. The present method is applied to conical shells with linearly varying thickness, and the effects of the semi-vertex angle, the number of circumferential waves and thickness ratio on vibration are studied.

  • PDF

수중 원통셸의 진동특성 연구 (A Study on the Modal Characteristics of Submerged Cylindrical Shell)

  • Park, Young-Jin;Kim, Sung-Joong;Han, Kyu-Hyun;Lee, Young-Shin
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.284-284
    • /
    • 2003
  • The free vibration characteristics of the cylindrical shell submerged in water is investigated using by FEM and experiment. In the FE analysis, the fluid-structure interaction effect is concerned. The restraint condition is clamped-free. In the results, the natural frequency and mode shape characteristics are evaluated with various water height. This results are compared with those of experiment to verify the validation of the FE analysis. The change of damping ratio is also presented by experiment.

  • PDF

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

Investigation of the effect of shell plan-form dimensions on mode-shapes of the laminated composite cylindrical shallow shells using SDSST and FEM

  • Dogan, Ali;Arslan, H. Murat
    • Steel and Composite Structures
    • /
    • 제12권4호
    • /
    • pp.303-324
    • /
    • 2012
  • This paper presents the mode-shape analysis of the cross-ply laminated composite cylindrical shallow shells. First, the kinematic relations of strains and deformation are given. Then, using Hamilton's principle, governing differential equations are developed for a general curved shell. Finally, the stress-strain relation for the laminated, cross-ply composite shells are obtained. By using some simplifications and assuming Fourier series as a displacement field, the governed differential equations are solved by the matrix algebra for shallow shells. Employing the computer algebra system called MATHEMATICA; a computer program has been prepared for the solution. The results obtained by this solution are compared with the results obtained by (ANSYS and SAP2000) programs, in order to verify the accuracy and reliability of the solution presented.