• Title/Summary/Keyword: Shell & Tube Type Heat Exchanger

Search Result 50, Processing Time 0.023 seconds

Observation Studies on Field Operation of a Exhausted Heat Recovery System for a 300 kW Class Small Gas Engine Cogeneration System (300 kW급 소형 열병합발전기용 배열회수 시스템의 실증운전 성능분석에 관한 연구)

  • Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Ra, Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.248-257
    • /
    • 2010
  • An exhausted heat recovery system for a small gas engine cogeneration plant was investigated. The system was designed and built in a 300 kW class cogeneration demonstrative system. The basic performance was tested depending on load variation, and installed to a field site as a bottoming heat and power supply system. The exhaust gas heat exchangers (EGHXs) in shell-and-tube type and shell-and-plate type were tested. The entire efficiency of the cogeneration system was estimated between 85 to 90% under the 100% load condition, of which trend appears higher in summer due to the less thermal loss than in winter. Power generation efficiency and thermal efficiency was measured in a range of 31~33% and 54~57%, respectively.

The Study on the Performance Characteristics due to the Degree of Superheat in $NH_3$ Refrigeration System III - The Comparison of Heat Exchanger Types -

  • Hong Suck-Ju;Ha Ok-Nam;Lee Kyu-Tae;Ha Kyung-Soo;Jeong Song-Tae;Hong Seong-In;Yun Kab-Sig;Kim Yang-Hyun;Kwon Il-Wook;Lee Jong-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Because the usage of CFC and HCFC based refrigerants are restricted due to the depletion of ozone layer, the $NH_3$ gas, in the experiment is evaluated to the performance characteristics for the superheat control to improve the energy efficiency. The experiment is carried out about the condensing pressure of refrigeration system from 1,500 kPa to 1,600 kPa through the degree of superheat from 0 to $10^{\circ}C$ at each condensing pressure. As a result, in the case of shell and tube type of heat exchanger, the COP is more efficient than other cases at the degree of superheat $1^{\circ}C$ at each condensing pressure. In the case of shell and disk type of heat exchanger, the COP is the most efficient at the degree of superheat 0.

Experimental study on the performance improvement of a screw-compressor-type chiller (스크류 압축식 냉동기의 성능향상에 관한 실험적 연구)

  • Lee, D.-Y.;Jung, S.-H.;Kang, B.H.;Hong, H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.48-60
    • /
    • 1999
  • An experimental study on the performance enhancement of a screw-compressor-type chiller with 100kW of nominal cooling capacity has been carried out. Performance test facility was developed to investigate the effects of a partial modification from the existing chiller on the performance. By replacing the existing shell-and -tube heat exchangers with plate heat exchangers, the cooling capacity is increased by 15~18% and the COP is also increased by 19~21% depending on the operation temperature range. Charging mixed refrigerant R22/R142b(80 : 20) instead of R22 into the chiller with plate heat exchangers improves the cooling capacity by 4% and the COP very largely by 30%. Each contribution of the plate evaporator, plate condenser, and mixed refrigerant to the performance enhancement is examined by analyzing the refrigeration cycle and the heat transfer processes. It is also shown that the chiller performance can be improved by adapting 2-stage-compression cycle using an economizer.

  • PDF

The Study on the Performance Characteristics of $NH_3$ Refrigeration System using a Shell and Tube Type Heat Exchanger

  • Hong Suck-Ju;Ha Ok-Nam;Kim Jae-Youl;Kwon Il-Wook;Lee Seung-Jae;Jeon Sang-Sin;Jeong Song-Tae;Ha Kyoung-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.69-74
    • /
    • 2005
  • Nowadays CFC and HCFC refrigerants are restricted because they causes to depletion of ozone layer. Accordingly, an experiment is apply to the $NH_3$ gas for refrigerant to study the performance characteristic and to improve the energy efficiency. An experiment are carried out for the condensed pressure in a range from 14.5bar to 16bar and for degree of superheat in a range from 0 to $10^{\circ}C$ at each condensed pressure. As the result of experiment, when degree of superheat is $1^{\circ}C$ and condensed pressure is 14.5bar, the refrigeration system showed the high performance.

The Effect of Stress on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박용 열교환기 세관의 SCC에 미치는 응력의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.22-32
    • /
    • 2003
  • Al-brass material is generally used at the state of plastic deformation, for example; bending, extension of bell mouth at shell and tube type heat exchanger. And SCC(stress corrosion cracking) of Al-brass material will be affected by residual stress as plastic deformation. SCC results from synergism between mechanical factor and corrosion environment. Mechanical factor is stress that directly relates with stress intensity factor at the crack tip. This paper was studied on the effect of stress on SCC of Al-brass tube under in $3.5\%$ NaCl. + $0.1\%\;NH_4OH$ solution by constant displacement tester. Increasing of acidified water flow into sea and speeds up corrosion rate of Al-brass which is used as a tube material of vessel heat exchanger by polluted coast seawater. The experimental results are as follow The latent time of SCC occurrence gets longer as the initial stress intensity factor($K_{Ii}$) gets lower The main crack was propagated as the initial stress intensity factor($K_{Ii}$) gets higher, and secondary cracks occurred by electro-chemical factor a(ter stage of released stress. Dezincification phase showed around the crack, and the range of dezincification gets wider as the initial stress intensity factor($K_{Ii}$) gets higher.

  • PDF

Design of a pilot-scale helium heating system to support the SI cycle (파이롯 규모 SI 공정 시험 설비에서의 헬륨 가열 장치 설계)

  • Jang, Se-Hyun;Choi, Yong-Suk;Lee, Ki-Young;Shin, Young-Joon;Lee, Tae-Hoon;Kim, Jong-Ho;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • In this study, researchers performed preliminary design and numerical analysis for a pilot-scale helium heating system intended to support full-scale construction for a sulfur-iodine (SI) cycle. The helium heat exchanger used a liquefied petroleum gas (LPG) combustor. Exhaust gas velocity at the heat exchanger outlet was approximately 40 m/s based on computational thermal and flow analysis. The maximum gas temperature was reached with six baffles in the design; lower gas temperatures were observed with four baffles. The amount of heat transfer was also higher with six baffles. Installation of additional baffles may reduce fuel costs because of the reduced LPG exhausted to the heat exchanger. However, additional baffles may also increase the pressure difference between the exchanger's inlet and outlet. Therefore, it is important to find the optimum number of baffles. Structural analysis, followed by thermal and flow analysis, indicated a 3.86 mm thermal expansion at the middle of the shell and tube type heat exchanger when both ends were supported. Structural analysis conditions included a helium flow rate of 3.729 mol/s and a helium outlet temperature of $910^{\circ}C$. An exhaust gas temperature of $1300^{\circ}C$ and an exhaust gas rate of 52 g/s were confirmed to achieve the helium outlet temperature of $910^{\circ}C$ with an exchanger inlet temperature of $135^{\circ}C$ in an LPG-fueled helium heating system.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

A Study on the Analysis of a Negative Pressure in the Seawater Line of a Main Centeral Cooler (MCC) for a Large LNG Ship (대형 LNG선 주냉각기 해수라인의 부압현상 해석에 관한 연구)

  • Jin, Chang-Fu;SaGong, Woon-Gon;Kim, Jong-Gyu;Kim, Chung-Sik;Song, Young-Ho;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.893-900
    • /
    • 2008
  • The heat exchangers in the ships have been changed from the conventional shell & tube type to the plate type due to some merits as a compactness, a high thermal efficiency and a light-weight. In recent. it is reported that the vacuum phenomena were occurred in the seawater outlet piping of a main central cooler (MCC) on the ships. From the viewpoints of a common sense, the vacuum pressure in the seawater piping is rare event and difficult to be convinced because the seawater is pumped into the piping by a seawater pump with a high discharge head. However, the occurrence of a vacuum pressure in the seawater line of an MCC is real situation and often gives a severe damage to a rubber gasket of an MCC with a plate type heat transfer area. In this study, we analyzed the vacuum pressure in the seawater line of an MCC by using the simpl Bernoulli's equation and found that the vacuum pressure in the seawater line of an MCC is inevitable untill the installation postion of an MCC is not lowered.

Performance Design of Boiler for Waste Heat Recovery of Engine Coolant by Rankine Steam Cycle (엔진 냉각수 폐열 회수를 위한 랭킨 스팀 사이클용 보일러의 성능 설계)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Hwang, Jae-Soon;Lee, Heon-Kyun;Lee, Dong-Hyuk;Park, Jeong-Sang;Lee, Hong-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.58-66
    • /
    • 2011
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop(HT loop) is a system to recover the waste heat from the exhaust gas, a low temperature loop(LT loop) is for heat recovery from the engine coolant cold relatively. This paper has dealt with a layout of a LT loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the LT boiler, a core part of a LT loop, has been presented and analytically investigated. Considering the characteristics of the cycle, the basic concept of the LT boiler has been determined as a shell-and tube type counterflow heat exchanger, the performance characteristics for various design parameters were investigated.

A Study on Dynamic Simulation of a Hybrid Parallel Absorption Chiller (병렬식 하이브리드 흡수식 냉온수기 동특성 시뮬레이션 연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.630-635
    • /
    • 2008
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism have been modeled. Flow discharge coefficients of the valves and the pumps were optimized for the double-effect mode with solar-heated water circulated. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. And the cases of the double mode with and without the solar energy were compared. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the single mode utilizing the solar energy only is not practical. It is suggested to operate the system in the double mode and the flow rate control system adaptive to variable solar energy input has to be developed.

  • PDF