• Title/Summary/Keyword: Shelf life

Search Result 1,536, Processing Time 0.019 seconds

Effect of Irradiation on the Microbial Content of Ready-to-Use Cooked Carrot

  • Byun, Myung-Woo;Lee, Na-Young;Jo, Cheo-Run;Lee, Eun-Young;Kim, Hee-Jeong;Shin, Dong-Hwa
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.138-141
    • /
    • 2007
  • The aim of this study was to investigate the effect of irradiation treatment on the inactivation of pathogens in ready-to-use cooked carrot. The pathogens tested were Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, and Listeria inocua. Following the inoculation of these organisms into cooked carrot (about $10^6-10^8\;CFU/g$), the growth of each was inhibited due to irradiation for 24 hr of storage at $20^{\circ}C$. S. typhimurium and E. coli inoculated into cooked carrot were not detected following irradiation with 3 kGy. S. aureus and L. inocua inoculated into the cooked carrot decreased by 5 logs (CFU/g) following 2 kGy irradiation. The range of $D_{10}$ values was from 0.30-0.50. The Hunter color, $L^*-,\;a^*-$, and $b^*-values$, and the hardness of the cooked carrot were not effected by irradiation treatment. The sensory score of irradiated cooked carrot was not statistically different from that of non-irradiated samples (p>0.05). These results indicate that low dose irradiation can enhance the microbial safety and extend the shelf-life of ready-to-eat foods such as cooked carrot.

Preservation of Coagulation Efficiency of Moringa oleifera, a Natural Coagulant

  • Katayon, S.;Ng, S.C.;Johari, M.M.N.Megat;Ghani, L.A.Abdul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.489-495
    • /
    • 2006
  • In recent years, there has been an interest to use Moringa oleifera as the natural coagulant due to cost, associated health and environmental concerns of synthetic organic polymers and inorganic chemicals. However, it is known that M. oleifera as the natural coagulant is highly biodegradable and has a very short shelf life. This research was carried out to investigate the effects of storage temperature, packaging methods, and freeze-drying on the preservation of M. oleifera seeds powders. Non freeze-dried M. oleifera was prepared into different packaging namely open container, closed container and vacuum packing, whilst, freeze-dried M. oleifera was stored in closed container and vacuum packing. Each of the packaging was stored at room temperature ($30\;to\;32^{\circ}C$) and refrigerator ($4^{\circ}C$). The turbidity removal efficiencies of stored M. oleifera were examined using jar test at monthly interval for 12 months. The results indicated that non freeze-dried M. oleifera kept in the refrigerator ($4^{\circ}C$) would preserve its coagulation efficiency. In addition, closed container and vacuum packing were found to be more appropriate for the preservation of non freeze-dried M. oleifera, compared to open container. Freeze-dried M. oleifera retained its high coagulation efficiency regardless the storage temperature and packaging method for up to 11 months. Besides, higher increment in zeta potential values for water coagulated with freeze-dried M. oleifera indicated the higher frequency of charge neutralization and better coagulation efficiency of freeze-dried M. oleifera, compared to non freeze-dried seeds. As a coagulant, M. oleifera did not affect the pH of the water after treatment.

Antimicrobial Edible Film Developed from Defatted Corn Germ Meal Fermented by Bacillus subtilis

  • Kim Hyung-Wook;Roh I-Woo;Kim Kyung-Mi;Jang In-Suk;Ha Sang-Do;Song Kyung-Bin;Park Sang-Kyu;Lee Won-Young;Youn Kwang-Sup;Bae Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.597-604
    • /
    • 2006
  • In order to extend the shelf-life of packaged or coated foods, an antibacterial edible film containing 1.8% of BLS was developed from the defatted corn germ meal, which had been fermented with Bacillus subtilis under the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. Water vapor permeability of the fermented film $(88.3mg/cm^2\;h)$ was higher than those of the normal corn germ films $(75.8mg/cm^2\;h)$. Protein solubility of the fermented film was also higher than ordinary corn germ film at the pH range of 3-10. The fermented corn germ film had higher tensile strength and lower % elongation (elongation rate) than the ordinary corn germ film. The antimicrobial activity of the film was more than 50% of the maximum activity after film production with heat treatment at $90^{\circ}C$ and pH adjustment to 9. When the corn germ protein film with bacteriocin-like substance was applied on the mashed sausage media containing E. coli, the bacterial growth inhibition was higher than the ordinary corn protein film.

Retardation of Kimchi Fermentation and Growth Inhibition of Related Microorganisms by Tea Catechins (차엽카테킨의 김치발효 지연 및 관련 미생물의 증식억제)

  • Wee, Ji-Hyang;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1275-1280
    • /
    • 1997
  • The possible use of tea catechins as natural preservatives for kimchi was investigated in this study. Tea catechins separated from tea leaves had antimicrobial activity against microorganisms related to kimchi fermentation, such as Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus brevis, Pediococcus cerevisiae, Streptococcus faecalis. The degree of antimicrobial activity of catechins were different among microorganisms; that is 2 mg/mL to Leuconostoc mesenteroides, Lactobacillus plantarum, and Pediococcus cerevisiae, 4 mg/mL to Streptococcus faecalis, and 5 mg/mL to Lactobacillus brevis; however, Saccharomyces cerevisiae can not be inhibited. The effect of tea catechins on retardation of kimchi fermentation was tested by measuring changes in pH and acidity. The changes of pH and acidity of baechu-kimchi and mul-kimchi were remarkably inhibited by adding the tea catechins at the level of 2 mg/g fresh baechu. These results suggest that the tea catechins can be successfully used for the extension of shelf-life of kimchi.

  • PDF

External Lyogel Formulation of Prostaglandin E1 Ethyl Ester (프로스타글란딘 E1 에칠에스테르의 외용 리오겔 제제 설계)

  • Yang, Sung-Woon;Lee, Jin-Kyo;Lee, Ji-Eun;Kim, Hee-Kyu;Park, Hye-Sook;Kim, Jong-Seok;Choi, Han-Gon;Yong, Chul-Soon;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • External lyogels containing prostaglandin $E_1$ ethyl ester $(PGE_1-EE)$, a prodrug of prostaglandin $E_1\;(PGE_1)$ as a therapeutic agent for erectile dysfunction, were formulated to overcome the aqueous instability and enhance the percutaneous absorption. Lyogels of $PGE_1-EE$ were prepared with ethanol (EtOH)/proplyene glycol (PG) cosolvent system as a vehicle, cineol as an enhancer, and hydroxypropylcellusose as a gelling agent. In vitro percutaneous absorption studies were performed to determine the rate of $PGE_1$ absorption through rat or hairless mouse skin. The permeability of $PGE_1-EE$ lyogel with enhancer was 16-fold greater than that of lyogel without enhancer. Cosolvent produced 9-fold increase in percutaneous absorption. Pharmacodynamic effects of lyogels were evaluated in mature male cats in terms of intracavernosal pressure (ICP). Lyogels containing 0.1 % of $PGE_1-EE$ showed higher ICP compared to intraurethral preparation of $PGE_1$ (1 %) and enhancer-free control lyogel. The shelf-life $(t_{10%})$ of lyogel at refrigerated condition $(4^{\circ}C)$ was calculated as 928 days, which is 4.2 times longer than that of control hydrogel. As a result, $PGE_1-EE$ was formulated successfully to a lyogel system with a selective enhancer and cosolvent system for the topical delivery of $PGE_1$.

Physicochemical Quality Changes in Chinese Cabbage with Storage Period and Temperature: A Review

  • Shim, Joon-Yong;Kim, Do-Gyun;Park, Jong-Tae;Kandpal, Lalit Mohan;Hong, Soon-jung;Cho, Byoung-Kwan;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.373-388
    • /
    • 2016
  • Background: Recent inquiries into high-quality foods have discussed the importance of the functional aspects of foods, in addition to traditional quality indicators such as color, firmness, weight, trimming loss, respiration rate, texture, and soluble solid content. Recently, functional Chinese cabbage, which makes up a large portion of the vegetables consumed in Korea, has been identified as an anticancer treatment. However, the investigation of practical issues, such as the effects of storage conditions on quality indicators (including functional compounds), is still limited. Purpose: We reviewed various studies on variations in the quality indicators and functional compounds of Chinese cabbage in response to different storage environments, focusing on storage temperature and storage period. In particular, we emphasized the effect of storage temperature and storage period on glucosinolate (GSL) levels, in order to provide guidelines for optimizing storage environments to maximize GSLs. Additionally, we used response surface methodology to propose experimental designs for future studies exploring the optimal storage conditions for enhancing GSL contents. Review: Large variations in quality indicators were observed depending on the cultivar, the type of storage, the storage conditions, and the harvest time. In particular, GSL content varied with storage conditions, indicating that either low temperatures or adequate air composition by controlled atmospheric storage may preserve GSL levels, as well as prolonging shelf life. Even though genetic and biochemical approaches are preferred for developing functional Chinese cabbage, it is important to establish a practical method for preserving quality for marketability; a prospective study into optimal storage conditions for preserving functional compounds (which can be applied in farms), is required. This may be achievable with the comprehensive meta-analysis of currently published data introduced in this review, or by conducting newly designed experiments investigating the relationship between storage conditions and the levels of functional compounds.

Postharvest Disease Control of Colletotrichum gloeosporioides and Penicillium expansum on Stored Apples by Gamma Irradiation Combined with Fumigation

  • Cheon, Wonsu;Kim, Young Soo;Balaraju, Kotnala;Kim, Bong-Su;Lee, Byeong-Ho;Jeon, Yongho
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.460-468
    • /
    • 2016
  • To study the control of postharvest decay caused by Colletotrichum gloeosporioides and Penicillium expansum, gamma irradiation alone or in combination with fumigation was evaluated to extend the shelf life of apples in South Korea. An irradiation dose of 2.0 kGy resulted in the maximum inhibition of C. gloeosporioides and P. expansum spore germination. The gamma irradiation dose required to reduce the spore germination by 90% was 0.22 and 0.35 kGy for C. gloeosporioides and P. expansum, respectively. Microscopic observations revealed that when the fungal spores were treated with gamma irradiation (4.0 kGy), conidial germination was stopped completely resulting in no germ tube formation in C. gloeosporioides. Treatment with the eco-friendly fumigant ethanedinitrile had a greater antifungal activity against C. gloeosporioides and P. expansum in comparison with the non-treated control under in vitro conditions. The in vitro antifungal effects of the gamma irradiation and fumigation treatments allowed us to further study the effects of the combined treatments to control postharvest decay on stored apples. Interestingly, when apples were treated with gamma irradiation in combined with fumigation, disease inhibition increased more at lower (< 0.4 kGy) than at higher doses of irradiation, suggesting that combined treatments reduced the necessary irradiation dose in phytosanitary irradiation processing under storage conditions.

Effect of Amine-Based Antioxidants as Stabilizers for Biodiesel (바이오디젤용 산화방지제인 아민안정제들의 효과)

  • Park, Soo-Youl;Kim, Hun-Soo;Kim, Seung-Hoi
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2015
  • Biodiesel is an environmentally-friendly fuel with low smoke emission because it contains about 10% oxygen. Biodiesel fuel prepared by transesterification of vegetable oil or animal fats is susceptible to auto-oxidation. The rate of auto-oxidation depends on the number of methylene double bonds contained within the fatty acid methyl or ethyl ester groups. Biodiesel may be easily oxidized under several conditions, i.e., upon exposure to sunlight, temperature, oxygen environment. Maintenance of the fuel quality of biodiesel requires the development of technologies to increase the resistance of biodiesel to oxidation. Treatment with antioxidants is a promising approach for extending the shelf-life or storage time of biodiesel. The chemical properties of various amine-based antioxidants were evaluated after synthesis of the antioxidants by condensation of phenylenediamine with alkylamines at room temperature. In general, the oxidative stability can be assessed based on various experimental parameters. Such parameters may include temperature, pressure, and the flow rate of air through the samples. The Rancimat method (EN14112) was selected because it is a rapid technique that requires very little sample and provides good precision for oxidative degradation analysis. Specifically, the EN 14112 technique provides enhanced efficiency for oxidative stability evaluation when a larger ester head group is utilized. Therefore, this technique was employed for evaluation of the oxidation stability of biodiesel by the Rancimat method (EN14112).

Improvement of physiological activity and processing quality through structural transformation of natural biomaterials based on radiation technology (방사선분자변환기술 기반 천연 생물소재 구조변환에 따른 가공적성 및 생리활성 증진 연구)

  • Byun, Eui-Baek;Song, Ha-Yeon;Kim, Hye-Min;Kim, Woo Sik;Lee, Seung Sik;Choi, Dae Seong;Lim, Sang-Yong;Chung, Byung Yeoup
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • Radiation technology (RT) has long been applied in various fields for increasing the safety and shelf-life of foods by controlling pathogen-induced poisoning. RT was introduced for the first time in Korea in the 1950s to eliminate harmful microorganisms in food materials. In the 1980s, RT had been scientifically proven to be effective for the sterilization of food and public health products. In recent years, irradiation with gamma rays has also been used for improving physiological properties through the structural modification of natural molecules, which has been proposed to be applicable to various industries. In particular, radiation transformation technology (RTT), which involves the development of new functional compounds through the molecular conversion of natural biomaterials, is becoming a new high-value technology as a fusion technique of RT and biotechnology. The present reports have suggested that RTT can be an effective tool for the development of new functional compounds and improvement of the physiological activity of biomolecules.

Cooking Properties of Low Caloric Buckwheat Taste Noodle (저열량 메밀맛국수의 조리특성)

  • Kim Kyeong-Yee
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.823-828
    • /
    • 2005
  • To lower the calories of buckwheat noodle, which is good for reducing obesity and for Preventing adult disease, glucomannan and flour containing resistant starch(RS) were used during the noodle making Process. Compared with raw noodle, this buckwheat raw noodle had $30\%$ fewer calories. This low caloric buckwheat noodle was coated with olive oil which is reputed as well-being food to prevent soddening to make instant type buckwheat noodle. Its shelf-life was extended to 90 days under normal temperature($35^{\circ}C$I). Among four noodle samples with different combinations of raw materials, the best was made of flour with RS formula flour, buckwheat flour, glucomannan, activated gluten, and emulsifying agent. The one without salt had better quality. Among 6 kinds of packing materials, OPP/Al/PE composite level film demonstrated the best quality packing materials.