• Title/Summary/Keyword: Sheet pile method

Search Result 41, Processing Time 0.027 seconds

Design Charts and Simplified Formulae for Anchored Sheet Pile Wall- Using Equivalent Beam Analysis for Fixed End Supported Wall - (앵커식 널말뚝벽의 설계용 도표와 간편식- 고정지지 널말뚝의 등가보 해석을 사용하여 -)

  • 김기웅;원진오;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The major design parameters of the anchored sheet-pile wall include the determination of required penetration depth, the force acting on the anchor, and the maximum bending moment in the piling. Blum solved the fixed earth supported wall using the equivalent beam method, assuming that the wall can be separated into upper and lower parts of the point of contraflexure. Design charts help designer by simplifying the design procedure. But they have some difficulties under some Geotechnical and geometrical conditions. For example, the conventional design charts can compute design parameters only when the ground water table exists above the dredge line. In this paper, the design charts which can be used for the ground water table existing under the dredge line are presented. And simplified formulae are developed by regression analysis. It is found that simplified formulae are not only very useful for the practice of design but also they can evaluate the result of numerical methods or design charts.

  • PDF

Research for a cases of overseas constructions and domestic tentative execution about high vacuum dewatering and consolidation/dehydration by Super Well point method (슈퍼웰포인트공법에 의한 고진공배수 압밀탈수에 대한 시공사례)

  • Shin, Chang-Beom;Kim, Dae-Hwal;Takahashi, Shigeyoshi;Lee, Kwang-Yeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.581-590
    • /
    • 2008
  • A SWP method is a revolutionary dewatering method. The conventional dewatering method, deep-well method, had ever occurred a civil appeal caused by the well depletion in compliance with the reduction of the groundwater level over a wider area considerably by the deep-well pumping from homogeneous sand-layer ground for a dry-work, while pump groung excavation working in Sendai city, Japan 10 years ago. it'd developed with the problematic proposal to find the new method which can lower the groundwater level only within the sheet pile without any reduction of groundwater outside of the sheet pile and until currently steady improvement came. It's been confirmed with plenty of executional results that there was almost no decreasing of water-level from surroundings, over so many construction-sites including vertical shafts which completely does not enter into non-water permeable layer and pumping ground etc. The SWP method in this time has been introducing initially and carried into a the execution tentatively at a construction-site and made a various result get through the execution.

  • PDF

An Estimation of Bearing Capacity and Driveability of Steel Sheet Pile Installed by Vibratory Hammer (진동해머에 의해 설치되는 강널말뚝의 지지력 및 항타관입성 평가)

  • Lee, Seung-Hyun;Yune, Chan-Young;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.339-347
    • /
    • 2007
  • Penetration tests were performed for two types of steel sheet piles which were driven in clay deposit and sand deposit. Penetration velocity data acquired from penetration tests were used in order to estimate bearing capacity and vibro-driveability of steel sheet piles. Bearing capacity values predicted from Davisson method and Bombard method were greater than that calculated from static bearing capacity formula by 11.9 times and 1.6 times respectively. Vibro-driveability predictions from $T\ddot{u}nkers$ method and ${\beta}$ method show correspondence to field test result fur sand deposit but not for clay deposit. From motor powers estimated by Savinov and Luskin method it can be seen that larger capacities of motor powers are required for clay deposit and adequate hammer was used for sand deposit.

  • PDF

The Case Study of Design on Steel Pipe Sheet Pile for Earth Retaining Wall on Deep Excavation (대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구)

  • Byung-Il Kim;Jong-Ku Lee;Kyoung-Tae Kim;Kang-Han Hong;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 2023
  • In this study, the results of the elasto-plastic beam analysis, finite element analysis and optimization design of the steel pipe sheet pile applied as an earth retaining wall under the deep excavation were presented. Through this study, it was found that the high-strength and sea resistant steel pipe has high allowable stress, excellent structural properties, favorable corrosion, and high utilization as an earth retaining wall, and the C-Y type joint has significantly improved the tensile strength and stiffness compared to the traditional P-P type. In addition, it was investigated that even if the leak or defect of the wall occurs during construction, it has the advantage of being able to be repaired reliably through welding and overlapping. In the case of steel pipe wall, they were evaluated as the best in views of the deep excavation due to the large allowable bending stress and deformation flexibility for the same horizontal displacement than CIP or slurry wall. Elasto-plastic and finite element analysis were conducted in consideration of ground excavation under large-scale earth pressure (uneven pressure), and the results were compared with each other. Quantitative maximum value were found to be similar between the two methods for each item, such as excavation behavior, wall displacement, or member force, and both analysis method were found to be applicable in design for steel pipe sheet pile wall. Finally, it was found that economical design was possible when determining the thinnest filling method with concrete rather than the thickest hollow shape in the same diameter, and the depth (the embedded length through normality evaluation) without rapidly change in displacement and member force.

Influence of the Anchor Slope on Behaviour of Sheet Pile (앵커의 경사(傾斜)가 널말뚝의 거동(擧動)에 미치는 영향(影響))

  • Chun, Byung Sik;Kang, In Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.79-87
    • /
    • 1989
  • The influence of anchor slope on behavior of sheet pile is analysed by results of model test. It can be seen that the larger inclination of anchor causes more causes more increases of the horizontal and vertical deflection of wall, but the bending moment is less influenced by the inclination of anchor. The negative friction against vertical settlement of wall has the yielding point at the excavation level of 0.71-0.80 H. The redistribution of earth pressure on the sheet pile with dredging must be considered by soil-arching. The zero pressure point from the toe of wall is 20% higher than that of the Free Earth Support Method. It is also observed that the angle of failure planes to major principal plane is larger than the angle of $45^{\circ}+{\phi}/2$.

  • PDF

Stability Analysis of the Excavation Slope on Soft Ground using Sheet Pile (널말뚝을 이용한 연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Seong Seop;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • The following results were obtained by analyzing the displacement, strain and stability of ground at the soft ground excavation using sheet pile. 1. Before setting the strut, the horizontal displacement was large on the upper part of excavated side, but after setting the strut, it showed concentrated phenomenon while being moved to go down to the excavated side. 2. After setting the strut, the displacement of sheet pile was rapidly decreased about a half compared with before setting the strut. The limitation of excavation depth was shown approximately GL-8m after setting double stair strut. 3. Maximum shear strain was gradually increased with depth of excavation, and local failure possibility due to shear deformation at the bottom of excavation was decreased by reinforcement of strut. 4. Maximum horizontal displacement of sheet pile at GL-7.5m was shown 0.2% of excavation depth in elasto-plastic method, and 0.6% in finite-element methods, and the maximum displacement was occurred around the bottom of excavation. 5. To secure the safety factor about penetration depth in the ground of modeling, D/H should be more than 0.89 in the case of one stair strut, and more than 0.77 in the case of double stair strut. 6. The relation of safety factor and D/H about the penetration depth was appeared, Fs=0.736(D/H) + 0.54 in the case of one stair strut, and Fs=0.750(D/H) + 0.62 in the case of double stair strut.

  • PDF

Stability Analysis and Reinforced Design Method of Excavation Slopes (굴착사면의 안정해석과 보강설계법)

  • 강예묵;이달원;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.140-154
    • /
    • 1996
  • In this study, displacement, deformation, and stability according to change of cohesion and internal friction angle were investigated through elasto-plastic method, finite-element method, and in-site experiment when excavating soft ground using sheet pile. The results of the study were as follows : 1. The horizontal displacement was 5.5% of the excavation depth by the elasto-plastic method and 3.9% of the excavation depth by the on-site experiment at the final excavation depth(GL-8.Om) on the condition of double stair strut after excavating GL-6.Om. 2. Relationships between cohesion(c) and internal friction angle $({\varphi})$ when safety factor to the penetration depth was 1.2 is shown in the following equations : (a) c= -O.0086$({\varphi})$+ O.3(D=3m) and (b) c=-0.00933$({\varphi})$+0.14(D=4m). 3. The results of elasto-plastic method and the experiment show that possible excavation depth was GL-6.Om after setting single stair strut in a short period in terms of possibility of carrying out on the condition of experimental site on the contrary general reinforcement method, setting double stair strut after excavating GL-4.0m. 4. After setting the strut, distribution of the horizontal displacement had concentrated on the excavation base and possible local failure which the shear strain caused decreased by the strut reinforced. 5. After setting strut, displacement of sheet pile was decreased by half, the limit of stable excavation depth of ground was GL-8.Om, and the maximum horizontal displacement at the GL-8.Om was 1.6% of excavation depth by the elasto-plastic method, 0.7% of excavation depth by the finite-element method.

  • PDF

연약지반 변형해석을 위한 다목적 Program개발

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.362-375
    • /
    • 1991
  • Background and Necessity of the study : For more than 20 years, the soil engineering reserach group of Chonnam National University has been performing the deformation analysis of soft clayey foundation, since the University is located near the south-western coast of Korean Peninsulla, along which tide reclamation works have been under proaressing. Associsted with the fact mentioned above, the researchers have been developing a computer program in order to carry out deformation analysis of soft foundation since early 1980. Case-studies : In this research, the Biot's equation was selected as the governing equation coupled with several constitutive models including original and modified Cam-clay models, elasto-viscoplastic model, Lade's model etc. The anisotropy of soi1 can be considered in this program. To validate the accuracy of the computer program developed a couple of case-studies were performed. These include the pilot banking, sand drain considering smear effect and compound foundation reinforced with sheet pile into soft foundation.i) The pilot banking Good results could be acquired by assuming banking load as the body force composed of finite element mesh rather than equivalent concentrated load.ii) The sand drain Due to smear, the delay of consolidation was remarkable at the early stsge. so safety for the failure of foundation should be checked for the initial step of consolidation. iii) The compound foundation Accurate results were obtained by introducing the joint element method for the soft foundation reinforced with sheet pile into soiㅣ.

  • PDF

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

Liquefaction Prevention and Damage Reduction Effect of Reinforcement by Sheet Pile Using 1-G Shaking Table Test (1-G 진동대 실험을 이용한 시트파일 보강재의 액상화 및 피해 방지 효과)

  • Sim, Sung Hun;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.211-217
    • /
    • 2020
  • Earthquake preparedness has become more important with recent increase in the number of earthquakes in Korea, but many existing structures are not prepared for earthquakes. There are various types of liquefaction prevention method that can be applied, such as compaction, replacement, dewatering, and inhibition of shear strain. However, most of the liquefaction prevention methods are applied before construction, and it is important to find optimal methods that can be applied to existing structures and that have few effects on the environment, such as noise, vibration, and changes in underground water level. The purpose of this study is to estimate the correlation between the displacement of a structure and variations of pore water pressure on the ground in accordance with the depth of the sheet file when liquidation occurs. To achieve this, a shaking table test was performed for Joo-Mun-Jin standard sand and an earth pressure, accelerometer, pore water pressure transducer, and LVDT were installed in both the non-liquefiable layer and the liquefiable layer to measure the subsidence and excess pore water pressure in accordance with the time of each embedded depth. Then the results were analyzed. A comparison of the pore water pressure in accordance with Hsp/Hsl was shown to prevent lateral water flow at 1, 0.85 and confirmed that the pore water pressure increased. In addition, the relationship between Hsp/Hsl and subsidence was expressed as a trend line to calculate the expected settlement rate formula for the embedded depth ratio.