• Title/Summary/Keyword: Sheet Pile

Search Result 96, Processing Time 0.021 seconds

ShakingTest of Waterfront Structure for Liquefaction Counter measure (항만구조물의 액상화 대책을 위한 진동대 실험에 대한 연구)

  • 박종관
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.37-50
    • /
    • 1992
  • Liquefaction leads to severe damage to earth structures after an earthquake. In this study, shaking table tests were performed on model waterfront structures as a countermeasure against liquefaction. The waterfront structure was reinforced by a compacted Bone, which was investigated for its effectiveness in protecting the structure from excessive deformation induced by the lateral pressure of liquefied ground. Through the tests . on embankment, double sheet pile wall, and anchor sheet pile wall, good quantitative information on the behavior of flow failure and the extent of reinforcement was obtained. The extent of a compacted zone for the protection of the structure depends on the magnitude of the acceleration during the shaking. The measured deformation was represented in terms of the extent of the compacted zone and the magnitude of the input acceleration.

  • PDF

COMMENTS ON MAGNETIC RECONNECTION MODELS OF CANCELING MAGNETIC FEATURES ON THE SUN

  • Litvinenko, Yuri E.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.187-190
    • /
    • 2015
  • Data analysis and theoretical arguments support magnetic reconnection in a chromospheric current sheet as the mechanism of the observed photospheric magnetic flux cancellation on the Sun. Flux pile-up reconnection in a Sweet–Parker current sheet can explain the observed properties of canceling magnetic features, including the speeds of canceling magnetic fragments, the magnetic fluxes in the fragments, and the flux cancellation rates, inferred from the data. It is discussed how more realistic chromospheric reconnection models can be developed by relaxing the assumptions of a negligible current sheet curvature and a constant height of the reconnection site above the photosphere.

Performance Evaluation of the Vibro Hammer with Variable Amplitude by Field Tests (현장실험을 통한 저진동·저소음 진폭가변형 진동해머 성능 평가)

  • Han, Jin-Tae;Lee, Joonyong;Choi, Changho;Park, Jeong-Yel
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.1-12
    • /
    • 2015
  • During installing sheet piles for an impermeable wall or a retaining wall, vibratory hammers are widely used. Among vibratory hammers, a hydraulic hammer is used most commonly. However, a hydraulic hammer causes excessive vibration and noise due to resonance by change of natural frequency according to movements of eccentric shaft when the hammer starts and stops. In this study, new variable amplitude type hammer is developed in order to reduce the vibration and noise due to resonance produced in starting and stopping the hammer. By controlling horizontal angle in two pairs of eccentric body inside of the hammer, the amplitude and vibration of the new hammer can be controlled. The performance tests with the new hammer and existing hammers such as the hydraulic hammer and electric hammer are carried out, and the new hammer shows reduced vibration and noise results in comparison with existing hammers from performance tests. Also, this study shows that penetration rates of sheet pile using the new hammer increase due to impellent force of a backhoe in comparison with the electric hammer and penetration rate increase in comparison with a general hydraulic hammer, since the new hammer can control the amplitude during penetration of sheet pile according to soil condition.

A Study for the Water Rising Effect on Flood Water Level by Debris (유송잡물에 의한 홍수위 상승 영향분석 - 삽교천의 선우대교를 중심으로 -)

  • Cho, Yong-Ho;Jeong, Sang-Man;Han, Kyu-Ha;Shin, Kwang-Seob
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.179-186
    • /
    • 2007
  • This paper has investigated a rise of water level in upstream and downstream of bridge, which is caused by accumulation of debris in a bridge. The debris has been classified into several types in terms of size. The rise of water level which has been caused by installation and removal of sheet pile that is used to block water in a bridge has been analyzed using HEC-RAS model. According to the analysis, it has turned out that the debris has no influence on the rise of water level in ordinary water flow. In addition, sheet pile has little impact on the rise of water as well. Even though the impact of sheet file has turned out trivial in flood flow just like the ordinary water flow, it's been simulated that the maximum water level difference between upstream and downstream of bridge turned out more than 1.0meter because of debris in 80-year or more flood frequency. When the rise of water level in upstream from the cross section of the bridge was investigated based on 100-year flood frequency, besides, it has turned out that it had an influence up to 17.84km distance because of the effect of debris.

Liquefaction Prevention and Damage Reduction Effect of Reinforcement by Sheet Pile Using 1-G Shaking Table Test (1-G 진동대 실험을 이용한 시트파일 보강재의 액상화 및 피해 방지 효과)

  • Sim, Sung Hun;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.211-217
    • /
    • 2020
  • Earthquake preparedness has become more important with recent increase in the number of earthquakes in Korea, but many existing structures are not prepared for earthquakes. There are various types of liquefaction prevention method that can be applied, such as compaction, replacement, dewatering, and inhibition of shear strain. However, most of the liquefaction prevention methods are applied before construction, and it is important to find optimal methods that can be applied to existing structures and that have few effects on the environment, such as noise, vibration, and changes in underground water level. The purpose of this study is to estimate the correlation between the displacement of a structure and variations of pore water pressure on the ground in accordance with the depth of the sheet file when liquidation occurs. To achieve this, a shaking table test was performed for Joo-Mun-Jin standard sand and an earth pressure, accelerometer, pore water pressure transducer, and LVDT were installed in both the non-liquefiable layer and the liquefiable layer to measure the subsidence and excess pore water pressure in accordance with the time of each embedded depth. Then the results were analyzed. A comparison of the pore water pressure in accordance with Hsp/Hsl was shown to prevent lateral water flow at 1, 0.85 and confirmed that the pore water pressure increased. In addition, the relationship between Hsp/Hsl and subsidence was expressed as a trend line to calculate the expected settlement rate formula for the embedded depth ratio.

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

The Stability of Excavated Soft Ground Supported by Sheet-pile Walls (강널말뚝 흙막이벽으로 시공된 굴착연약지반의 안정성)

  • Hong Won-Pyo;Kim Dong-Uk;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.5-14
    • /
    • 2005
  • Based on the field measuring data obtained from excavation sections in Inchon International Airport project, the relationships between the horizontal displacement of sheet-pile walls and the deformations of soft ground around the excavation were investigated. The horizontal displacements of walls according to supporting method occur, and the displacements were found to become larger in the order of anchors, anchors with struts, and struts. The depths of maximum horizontal displacement are varied with supporting systems. If the stability number shows lower than ${\pi}$, the maximum horizontal displacement and the velocity of maximum horizontal displacement are respectively developed less than $1\%$ of excavation depth and 1mm/day. When the stability number shows lower than ${\pi}+2$, the maximum horizontal displacement and the velocity are respectively developed less than $2.5\%$ of excavation depth and 2mm/day. Also, when the stability number shows more than ${\pi}+2$, the maximum horizontal displacement and the velocity rapidly increase. Also, the maximum horizontal displacement is found to increase rapidly when N value is less than 10. The maximum horizontal displacement increases with decreasing the factor of safety against basal heave (Terzaghi, 1943), and the maximum horizontal displacement is found to increase rapidly when the factor of safety against basal heave is greater than 2.0. This value can be proposed as the criterion for the factor of safety against basal heave in Korea.

A Case Analysis on the Displacement of Soft Fundation -Kwangyang Industrial Highway- (연약지반의 변위에 대한 사례연구-광양산업도로)

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.43-58
    • /
    • 1994
  • In this reaserch, the comparison between numerical results and field measurments including settlement, heaving and lateral displacement, in the interchange construction works on soft ground. Sand drain was performed for the improvement of the site and steel pipe piles driven for the pier foundation of interchange. The steel pipe piles were replaced to the equivalent steel sheet pile wall. Biot's equation was coupled with elasto-viscoplastic model for the multi-purpose program of soft foundation. Finally countemeasures for future possible lateral displacement and settlement were exmanined.

  • PDF

A Case Study on Design and Construction of Cofferdam for Hydraulic Structure (수중구조물을 위한 가물막이 설계 및 시공사례에 대한 연구)

  • Cho, Joo-Hwan;Shin, Dong-Hoon;Jeong, Seung-Tai;Woo, Sang-Yoon;Nam, Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.124-143
    • /
    • 2010
  • Cofferdam is a temporary levee or dam structure built by using sheet pile or earth materials to prevent water infiltration during construction work of bridge, dam, harbour dock, or hydraulic structures in the river. In this regard, it is required to secure cutoff ability for dry work and workability for rapid installation and removal of the temporary dam or levee structures. In this paper, case studies for design and construction of cofferdam were performed, and water diversion method was briefed with some examples of cofferdam type as well. For the case study details of design and construction were reviewed based on cofferdams under construction related to 16 submerged weirs of "The 4-river restoration project" and dam type cofferdam respectively. From the review, it was known that the method for changing the water flow is selected based on the data from geological and geo-hydraulic site investigation in order to mitigate environmental effects by making sure if the design cross-sectional area of flow and maximum working days are sufficiently guaranteed. Finally, the primary findings and main conclusion derived are summarized that determination of applicable type of cofferdam should be checked by case study and meet design requirements such as water inflow control, constructability.

  • PDF

Stability Analysis and Reinforced Design Method of Excavation Slopes (굴착사면의 안정해석과 보강설계법)

  • 강예묵;이달원;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.140-154
    • /
    • 1996
  • In this study, displacement, deformation, and stability according to change of cohesion and internal friction angle were investigated through elasto-plastic method, finite-element method, and in-site experiment when excavating soft ground using sheet pile. The results of the study were as follows : 1. The horizontal displacement was 5.5% of the excavation depth by the elasto-plastic method and 3.9% of the excavation depth by the on-site experiment at the final excavation depth(GL-8.Om) on the condition of double stair strut after excavating GL-6.Om. 2. Relationships between cohesion(c) and internal friction angle $({\varphi})$ when safety factor to the penetration depth was 1.2 is shown in the following equations : (a) c= -O.0086$({\varphi})$+ O.3(D=3m) and (b) c=-0.00933$({\varphi})$+0.14(D=4m). 3. The results of elasto-plastic method and the experiment show that possible excavation depth was GL-6.Om after setting single stair strut in a short period in terms of possibility of carrying out on the condition of experimental site on the contrary general reinforcement method, setting double stair strut after excavating GL-4.0m. 4. After setting the strut, distribution of the horizontal displacement had concentrated on the excavation base and possible local failure which the shear strain caused decreased by the strut reinforced. 5. After setting strut, displacement of sheet pile was decreased by half, the limit of stable excavation depth of ground was GL-8.Om, and the maximum horizontal displacement at the GL-8.Om was 1.6% of excavation depth by the elasto-plastic method, 0.7% of excavation depth by the finite-element method.

  • PDF