• Title/Summary/Keyword: Sheet Model

Search Result 794, Processing Time 0.024 seconds

Friction Model for Sheet Metal Forming Analysis (Part1 : Experiment) (박판성형 해석용 마찰모델 (1부 : 실험))

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction test of various sheet were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is relatively high. The result also show that as the punch radius and punch speed becomes bigger, the friction coefficient is smaller. Using experimental results, the mathematical expression between friction coefficient and lubricant viscosity, surface roughness, punch comer radius, or punch speed is also described.

Identification of the Bulk Behavior of Coatings by Nanoindentation Test and FE-Simulation and Its Application to Forming Analysis of the Coated Steel Sheet (나노인덴테이션 시험과 유한요소해석을 이용한 자동차 도금 강판의 도금층 체적 거동결정 및 성형해석 적용)

  • Lee, Jung-Min;Lee, Kyoung-Su;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1425-1432
    • /
    • 2006
  • Coating layers on a coated sheet steel frequently affect distributions of strain rate of sheets and deteriorate the frictional characteristics between sheets and tools in sheet metal forming. Thus, it is important to identify the deformation behavior of these coatings to ensure the success of the sheet forming operation. In this study, the technique using nano-indentation test, FE-simulation and Artificial Neural Network(ANN) were proposed to determine the power law stress-strain behavior of coating layer and the power law behavior of extracted coating layers was examined using FE-simulation of drawing and nano-indentation process. Also, deep drawing test was performed to estimate the formability and frictional characteristic of coated sheet, which was calculated using the linear relationship between drawing force and blank holding force obtained from the deep drawing test. FE-simulations of the drawing process were respectively carried out for single-behavior FE-model having one stress-strain behavior and for layer-behavior FE-model which consist of coating and substrate separately. The results of simulations showed that layer-behavior model can predict drawing forces with more accuracy in comparison with single-behavior model. Also, mean friction coefficients used in FE-simulation signify the value that can occur maximum drawing force in a drawing test.

Analysis on Response Characteristics of a Flexible Net Sheet in Waves (파랑중 유연한 그물망의 응답특성 해석)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2012
  • Based on the hydroelastic theory and the matched eigenfunction expansion method(MEEM), the dynamic behavior of the porous flexible net sheet and wave forces have been investigated in monochromatic waves. The net sheet is installed vertically with the submergence depth. Top end of a net sheet is fixed and its lower end is attached by a clump weight. It is assumed that the initial tension is sufficiently large so that the effects of dynamictension variation can be neglected. The boundary condition on the porous flexible net sheet is derived based on Darcy's fine-pore model and body boundary condition. The developed analytic model can be extended to the impermeable/permeable vertical plate and the impermeable flexible membrane. The analytical model was used to study the influence of design parameters(wave characteristics, porosity, submergence depth, initial tension) on the response characteristics and wave load of the net sheet.

NUMERICAL MODELLING OF SHEET-FLOW TRANSPORT UNDER WAVE AND CURRENT

  • Bakhtiary, Abbas-Yeganeh;Hotoshi Gotoh;Tetsuo Sakai
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.75-84
    • /
    • 2002
  • An Euler-Lagrange two-phase flow model is presented fur simulation sheet-flow transport under wave and current. The flow is computed by solving the Reynolds Averaged Navier-Stokes equation in conjunction with the k-$\varepsilon$ turbulence model for turbulence closure. The sediment transport is introduced as a motion of granular media under the action of unsteady flow from the Lagragian point of view. In other word, motion of every single particle is numerically traced with Movable Bed Simulator (MBS) code based on the Distinct Element Method (DEM), in which the frequent interparticle collision of the moving particles during the sheet-flow transport is sophisticatedly taken into account. The particle diameter effect on time-dependent developing process of sheet-flow transport is investigated, by using three different diameter sizes of sediment. The influence of an imposed current on oscillatory sheet-flow transport is also investigated. It is concluded that the sediment transport rate increases due to the relaxation process related to the time-lag between flow velocity and sediment motion.

  • PDF

LINEAR INSTABILITY ANALYSIS OF A WATER SHEET TRAILING FROM A WET SPACER GRID IN A ROD BUNDLE

  • Kang, Han-Ok;Cheung, Fan-Bill
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.895-910
    • /
    • 2013
  • The reflood test data from the rod bundle heat transfer (RBHT) test facility showed that the grids in the upper portion of the rod bundle could become wet well before the arrival of the quench front and that the sizes of liquid droplets downstream of a wet grid could not be predicted by the droplet breakup models for a dry grid. To investigate the water droplet generation from a wet grid spacer, a viscous linear temporal instability model of the water sheet issuing from the trailing edge of the grid with the surrounding steam up-flow is developed in this study. The Orr-Sommerfeld equations along with appropriate boundary conditions for the flow are solved using Chebyshev series expansions and the Tau-Galerkin projection method. The effects of several physical parameters on the water sheet oscillation are studied by determining the variation of the temporal growth rate with the wavenumber. It is found that a larger relative steam velocity to water velocity has a tendency to destabilize the water sheet with increased dynamic pressure. On the other hand, a larger ratio of steam boundary layer to the half water sheet thickness has a stabilizing effect on the water sheet oscillation. Droplet diameters downstream of the spacer grid predicted by the present model are found to compare reasonably well with the data obtained at the RBHT test facility as well as with other data recently reported in the literature.

Analysis of Bending Behavior of Ultra-thin SS304 Stainless Steel Sheets Considering the Surface Effect (표면 효과를 고려한 극박 SS304 스테인리스 강판의 굽힘 거동 분석)

  • Jung, J.;Chae, J.Y.;Chung, Y.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.323-330
    • /
    • 2020
  • The surface region of a sheet metal may have different characteristics from the inner region because the surface region is less restricted than the interior. In addition, the grains on the free surface are less hardened because of surface adsorption of the dislocations, rather than piling up. In the case of bulk or thick sheet metals, this effect is negligible because the fraction of the surface region is much smaller than that of the inner region. However, this surface effect is important in the case of ultra-thin sheet metals. In order to evaluate the surface effect, tensile and bending tests were performed for the SS304 stainless steel with a thickness of 0.39 mm. The bending force predicted using the tensile behavior is higher than the measurement because of the surface effect. To account for the surface effect, the surface layer model was developed by dividing the sheet section into surface and inner layers. The mechanical behaviors of the two regions were calibrated using the tensile and bending properties. The surface layer model reproduced the bending behavior of the ultra-thin sheet metal.

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms (반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

Mechanical Properties of Particle and Fiber Reinforced SMC Composites (입자와 섬유로 보강된 SMC 복합재의 기계적 특성에 관한 연구)

  • 정현조;윤성호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • An analytical model has been developed to predict the elastic properties of a filled resin reinforced by chopped fibers, a three-phase composite such as a filled sheet molding compound(SMC). In the model the matrix material and fillers form an effective matrix. The effective matrix is then considered to be reinforced with long fibers lying in the sheet plane but randomly oriented in the plane. Expressions for the resulting transversely isotropic composite properties are explicitly presented. Using this model, the Young's and shear moduli are calculated for the SMC sample with filler weight fraction of 35% and fiber content of 30%. The same properties are also determined experimentally. The agreement between the calculated and measured elastic moduli is found to be very good for the in-plane properties. However, the out-of-plane properties show a large difference because the effect of voids is not taken into account in the model.

  • PDF