• Title/Summary/Keyword: Sheet Metal

Search Result 1,293, Processing Time 0.031 seconds

The study for the forming technology of Automobile Bumper beam using the Tailored Blank of Mash Seam Welding (매쉬심 합체박판을 이용한 자동차 Bumper beam의 성형기술에 관한 연구)

  • Shin W.G.;Lee S.H.;Kim E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1376-1380
    • /
    • 2005
  • In recent automotive industry, vehicle weight can be reduced by one-step forming of tailored blanks welded with two or more sheets of metal blanks. Tailored blank(TB) welding is a production method for blanks involving welding together materials of different quality, thickness, and coating, and has proved popular in fabrication automotive parts. This paper deals with the forming characteristics of mash seam welded tailored blanks. Using these forming characteristics, the bumper beam was developed using the mash seam welded tailored blank with the different thickness. We performed the forming simulation with respect to strain distribution on blank during the stamping of the bumper rail part. Based on these results, we made some stamping tryouts with selected types of blank designs to investigate the formability of tailored blank with different thickness. During the tryouts, we knew that it was important the BHF(Blank Holding Force). We obtained to reducing 10.5% weight and cost with adapting the bumper beam of automotive component using the tailored blank of mash seam welding.

  • PDF

A Study on the Behavior of Wrinkles in Cup Drawing with Al alloy by FEM (유한요소법에 의한 합금의 용기 성형시 Al 주름의 거동에 관한 연구)

  • Ko D.L.;Jeon C.Y.;Kim J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1240-1243
    • /
    • 2005
  • The wrinkling in the flange and wall of a part is a predominant failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding force(BHF), but BHF affects the draw depth. Gotoh had studied the wrinkles under $20{\mu}$ in height. In general, the height of wrinkles could be limited under $200{\mu}$ practically. Therefore small BHF can be allowed so that the depth of drawing could be increased. This paper represents the variation of the wrinkles of flange in the part of cup drawing by using aluminium alloy A1050 and A5052. This simulation is used by the explicit finite elements code $PAM-STAMP^{TM}$. The computed results are compared with the experimental results to show the validity of the analysis.

  • PDF

Effect of Heat Treatment Conditions on the Microstructure and Mechanical Properties of Asymmetrically Cold Rolled OFC Sheet (비대칭 냉간압연된 무산소동 판재의 열처리 조건이 미세조직과 기계적 성질에 미치는 영향)

  • Kim, S.T.;Kwon, S.C.;Kim, D.V.;Lee, J.K.;Seo, S.J.;Yoon, T.S.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.5-10
    • /
    • 2020
  • Heat treatment conditions of 88.5% asymmetrically cold rolled oxygen free copper (OFC) sheets have been studied to obtain an equiaxed fine microstructure with a grain size of less than 10 ㎛. The commercial OFC sheets with the thickness of 10 mm were asymmetrically cold rolled by using equal speed asymmetric rolling (ESAR) processes and total rolling reduction. The thickness of the rolled sheets were 88.5% and 1.15 mm, respectively. An equiaxed fine microstructure of OFC sheets with a grain size of 6.0 ㎛ were obtained when the asymmetrically cold rolled OFC sheets were heat treated at 180℃ for 40 minutes. The tensile strength of the asymmetrically cold rolled specimen increased from 217.6 MPa to 396.1 MPa, while the elongation of the specimen asymmetrically cold rolled and heat treated increased from 29.0% to 66.9% along with an 8% increase of the tensile strength.

Development of auto-alignment punching system and de-burring (자동 정렬 펀칭 시스템의 개발과 디버링)

  • 홍남표;신홍규;김병희;김헌영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.434-438
    • /
    • 2003
  • The shearing process for the sheet metal is normally used in the precision elements such as semi-conductor components. In these precision elements, the burr formation brings a bad effect on the system assembly and demands the additional de-burring process. In this paper, we have developed the desktop-type precision punching system to investigate the burr formation mechanism and present kinematically Punch-die auto aligning methodology, for the purpose of burr unifomizing and minimizing, between the rectangular shaped punch and die. By using the scanning electron microscope, the aligned punching results are compared with the miss-aligned ones. Also, we measured the relative burr heights using the self-designed laser measuring device for insitu self aligning. Since it is hard to get the perfect, so called, burr-free edges during the shearing process, we introduced the ultrasonic do-burring machine. The de-burring operation was carried out by a novel do-burring method, the reversal flow resistance method, under different machining loads and abrasive types. The final do-burring results show the validity of our punching do-burring system pursuing the burr-free punched elements.

  • PDF

Tendency Analysis of Shape Error According to Forming Parameter in Flexible Stretch Forming Process Using Finite Element Method (유한요소법을 이용한 가변스트레치공정 성형변수에 따른 성형오차 경향분석)

  • Seo, Y.H.;Heo, S.C.;Song, W.J.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.486-493
    • /
    • 2010
  • A shape error of the sheet metal product made by a flexible stretch forming process is occurred by a various forming parameters. A die used in the flexible stretch forming is composed of a punch array to obtain the various objective surfaces using only one die. But gaps between the punches induce the shape error and the defect such as a scratch. Forming parameters of the punch size and the elastic pad to prevent the surface defect must be considered in the flexible die design process. In this study, tendency analysis of shape error according to the forming parameters in the flexible stretch process is conducted using a finite element method. Three forming parameters, which are the punch size, the objective curvature radius and the elastic pad thickness, are considered. Finite element modeling using the punch height calculation algorithm and the evaluation method of the shape error, which is a representative value for the formability of formed surface, are proposed. Consequently, the shape error is in proportion to the punch size and is out of proportion to the objective curvature radius and the elastic pad thickness.

Electromagnetic Wave Absorbing Properties of FeSiCr and Fe50Ni Flaky Powder-Polymer Composite Sheet (FeSiCr에 Fe50Ni가 첨가된 폴리머 복합 시트의 전자파 흡수 특성)

  • Lee, Seok-Moon;Kim, Sang-Mun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.462-467
    • /
    • 2014
  • In this paper, we studied the magnetic composite sheets for electromagnetic wave noise absorber of quasi-microwave band by using soft magnetic FeSiCr and Fe50Ni flakes with the thickness of about $1{\mu}m$ and polymer. The magnetic hysteresis curve including saturation magnetization and residual magnetization and the complex permeability characteristics of the composite sheets were investigated to clarify the mixing effect on electromagnetic wave absorption properties. The saturation magnetization was decreased about 10% while the residual magnetization was increased about 15% and the real parts of complex permeability at below 500 MHz were increased 0.6~4 while those values at above 500 MHz were decreased 0.4~2.5 according to the change of contents of FeSiCr and Fe50Ni powders. As a result, the reflection loss can be moved to the lower frequency from 2~3 GHz to 1~1.5 GHz as the contents of Fe50Ni flaky powder into FeSiCr flaky powder was increased up to 50%.

A Comparative Study on the Various Blocking Layers for Performance Improvement of Dye-sensitized Solar Cells

  • Woo, Jong-Su;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.312-316
    • /
    • 2013
  • In this study, short-circuit preventive layer (blocking layer) was deposited between conductive transparent electrode and porous $TiO_2$ film in the DSSCs. As blocking layer, we selected the metal-oxide such as $TiO_2$, $Nb_2O_5$ and ZnO. The sheet resistance with each different blocking layers were 18 ${\Omega}/sq.$ for the $TiO_2$, 10 ${\Omega}/sq.$ for the $Nb_2O_5$ and 8 ${\Omega}/sq.$ for the ZnO, while the RMS (Root Mean Square) roughness value of DSSCs were 39.61 nm for the $TiO_2$, 41.84 nm for the $Nb_2O_5$ and 36.14 nm for the ZnO respectively. From the results of photocurrent-voltage curves, a sputtered $Nb_2O_5$ blocking layer showed higher performance on 2.64% of photo-electrochemical properties. The maximum of conversion efficiency which was achieved under 1 sun irradiation by depositing the blocking layer increased up to 0.56%.

Low Velocity Impact Behavior of Metallic Sandwich Plate with a Truss Core (트러스형 내부구조를 가지는 샌드위치 판재의 저속 충격 특성 연구)

  • Jung, Chang-Gyun;Seong, Dae-Yong;Yang, Dong-Yol;Kim, Jin-Suck;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.80-87
    • /
    • 2006
  • Metallic sandwich plate with a truss core has metallic inner structures which have low relative density between a pair of metal skin sheets or face sheets. In this work, low impact tests have been carried out to examine the behavior of sandwich plates with a pyramidal truss core. For the low velocity impact, the impact apparatus of drop weight type has been fabricated. From the results of the experiments, maximum energy absorption is found to happen when the upper sheet fails. The sandwich plate loses its absorption ability as soon as the inner structures have been crashed completely and optimal core thickness has existed to maximize energy absorption. Comparing the metallic sandwich plate with the monocoque plate, the absorbed energy has been improved up to 160 % and the deflection decreased by up to 76%. As a result, the metallic sandwich plate with a truss core is shown to have good material for impact resistance and energy absorption.

The Development of Punch-Die Aligning Algorithm in Micro Punch System with using the Total Capacitance (총 정전용량을 이용한 마이크로펀치 시스템의 펀치-다이 얼라인먼트 조절 알고리즘 개발)

  • 최근형;김병희;김헌영;장인배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.114-119
    • /
    • 2003
  • The aligning between the punch and die governs no only the burr formation characteristics but also the life time of the punch and die in the sheet metal blanking process. There are many ways to adjust the two elements in the general punching systems but in the case of micro punch system, the punch size is reduced to a few tenth of micrometer range and the general aligning methods are almost impossible to apply. The image processing is the most widely used method in micro punch aligning, but in order to apply the method, it needs quite a large space for visionary system to approach the punch-die aligning zone. In this paper, the new punch-die aligning method with using the total capacitance between the punch and die hole is proposed. In this method, the tip surface of the punch tool locates at the same plane of the die surface and the capacitance variation between the two elements are measured. When the center of the two elements are coincided, the capacitance is minimized, but when the align is changed to any direction, the capacitance between the two elements increase. In order to verify the feasibility of this method, the aligning and punching tests was performed.

A Study on the Development of Deep Drawing Press using a Rotating Disk (회전원판을 이용한 디프드로잉용 프레스 개발에 관한 연구)

  • 황병복;강성호;김진목
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.69-78
    • /
    • 1994
  • A rotating disk is introduced to be applied to the deep drawing press. Several characteristics are summarized to see the basics of deep drawing of sheet metal in terms of load-stroke relationship and formability. Many conventional drawing presses, which are mostly link-type presses, are also shown to be compared with the rotating disk-type press. Performances of the new press are kinematically analyzed it terms of load-main gear angle relationship, stroke-gear angle relationship, and slide velocity-gear angle relationship and they are compared with those of conventional types', e. g. crank press and so on. The comparison show kinematically better performance of rotating disk-type press than that of conventional ones. Also, the new press are proven to be one of the best press for mass production in terms of cycle time. Applicability of the rotating disk press to deep drawing and cold forging work is introduced. The new press is described in terms of economy such that the cost of new press would be much lower than those of conventional types'.