DOI QR코드

DOI QR Code

A Comparative Study on the Various Blocking Layers for Performance Improvement of Dye-sensitized Solar Cells

  • Woo, Jong-Su (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Jang, Gun-Eik (Department of Advanced Materials Engineering, Chungbuk National University)
  • Received : 2013.07.26
  • Accepted : 2013.10.16
  • Published : 2013.12.25

Abstract

In this study, short-circuit preventive layer (blocking layer) was deposited between conductive transparent electrode and porous $TiO_2$ film in the DSSCs. As blocking layer, we selected the metal-oxide such as $TiO_2$, $Nb_2O_5$ and ZnO. The sheet resistance with each different blocking layers were 18 ${\Omega}/sq.$ for the $TiO_2$, 10 ${\Omega}/sq.$ for the $Nb_2O_5$ and 8 ${\Omega}/sq.$ for the ZnO, while the RMS (Root Mean Square) roughness value of DSSCs were 39.61 nm for the $TiO_2$, 41.84 nm for the $Nb_2O_5$ and 36.14 nm for the ZnO respectively. From the results of photocurrent-voltage curves, a sputtered $Nb_2O_5$ blocking layer showed higher performance on 2.64% of photo-electrochemical properties. The maximum of conversion efficiency which was achieved under 1 sun irradiation by depositing the blocking layer increased up to 0.56%.

Keywords

References

  1. B. O'Regan, M. Grazel, Nature (London) 353 (1991) 737. https://doi.org/10.1038/353737a0
  2. M. Gratzel, Dye-sensitised solar cells: review, J. Photochem. Photobiol. C:
  3. A. F. Nogueria, C.L ongo, M.-A. Depaoli, Polymers in dye sensitized cells: overview and perspectives: review, Coord. Chem. Rev. 248 (2004) 1455-1468. https://doi.org/10.1016/j.ccr.2004.05.018
  4. D. L. Eaten, US Patent 3, 904 422 (1975).
  5. B.A. Gregg, Interfacial processes in the dye-sensitized solar cell: review, Coord. Chem. Rev. 248 (2004) 1215-1224. https://doi.org/10.1016/j.ccr.2004.02.009
  6. M.F. Hossain, S. Biswas, T. Takahashi. Thin Solid Films 517 (2008) 1294-1300 https://doi.org/10.1016/j.tsf.2008.06.027
  7. H. You, S. Zhang, H. Zhao, G. Will, P. Liu, Electochimica Acta 54 (2009) 1319-1324 https://doi.org/10.1016/j.electacta.2008.09.025
  8. S. W, H. HAN, Q. Tai, J. Zhang, S. Xu, C. Zhou, Y. Yang, H. Hu, B. Chen, X.Z. Zhao, Journal of Power Souces 182 (2008) 119-123. https://doi.org/10.1016/j.jpowsour.2008.03.054
  9. J.R. Durrant, S.A. Haque, E. Palomares, Coord. Chem. Rev. 248 (2004) 1247. https://doi.org/10.1016/j.ccr.2004.03.014
  10. P. J. Cameron, L. M. Peter, J. Phys. Chem. B 107 (2003) 14394. https://doi.org/10.1021/jp030790+
  11. K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev. 177 (1998) 347. https://doi.org/10.1016/S0010-8545(98)00189-1
  12. E. Palmares, J. N. Clifford, S. A. Haque, T. Lutz, J.R. Durrant, Chem. Commun. (2002) 1464-1465.
  13. Z.-S. Wang, M. Yanagida, K. Sayama, H. Sugihara, Chem. Mater. 18 (2006) 2912-2916. https://doi.org/10.1021/cm0603102
  14. E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, J. Am. Chem. Soc. 125 (2003) 475-482. https://doi.org/10.1021/ja027945w
  15. P. J. Cameron, L. M. Peter, S. Hore, J. Phys. Chem. B 109 (2005) 930. https://doi.org/10.1021/jp0405759
  16. S. Ito, P. Liska, P. Comte, R. Charvet, P. Pehy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Grazel, Chem. Commun. (2005) 4351.
  17. J. N. Hart, D. Menzies, Y.-B. Cheng, G. P. Simon, L. Spiccia, C. R. Chim. 9 (2006) 622. https://doi.org/10.1016/j.crci.2005.02.052
  18. J. Xia, N. Masaki, K. Jiang, S. Yanagida, J. Phys. Chem. C 111 (2007) 8092. https://doi.org/10.1021/jp0707384
  19. S.-J. Roh, R. S. Mane, S.-K. Min, W.-J. Lee, C. D. Lokhande, S.-H. Han, Appl. Phys. Lett. 89 (2006), 253512/1.
  20. Z.-S.Wang, M. Yanagida, K. Sayama, H. Sugihara, Chem. Mater. 18 (2006) 2912. https://doi.org/10.1021/cm0603102
  21. X.Wu, L.Wang, F. Luo, B. Ma, C. Zhan, Y. Qiu, J. Phys. Chem. C 111 (2007) 8075. https://doi.org/10.1021/jp0706533
  22. S.U. Lee, W.S. Choi, Byungyou Hong, Sol. Ener. Mater & sol. Cel. 94 (2010) 680-685. https://doi.org/10.1016/j.solmat.2009.11.030

Cited by

  1. Highly Porous ZnO Thin Films and 1D Nanostructures by Remote Plasma Processing of Zn-Phthalocyanine vol.13, pp.2, 2016, https://doi.org/10.1002/ppap.201500133
  2. Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness vol.102, 2017, https://doi.org/10.1016/j.spmi.2017.01.003