• 제목/요약/키워드: Sheet Material

검색결과 1,576건 처리시간 0.035초

한중콘크리트 시공시 표면 단열재 변화에 따른 콘크리트의 온도이력 특성 (The Properties of Temperature History of Concrete with Surface Insulating Material in Cold Weather Concreting)

  • 문학용;신동안;김경민;김기철;오선교;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.7-11
    • /
    • 2003
  • This study investigate the hydration heat history with variation of surface insulating material in cold weather concreting. According to the results, the temperature of concrete lowers below zero in 24hours, so early frost damage occurs in the case of exposure and 1 fold bubble sheet, but the lowest temperature keeps above zero, so a adiabatic effect is very favorable in the case of double bubble sheet and 부직포. Compressive strength of core specimen at 7 and 28 days is highest In the case of double bubble sheet and 부직포. But, considering convenience of construction and economical efficiency, it is thought that the most effective surface insulating material is 1 fold bubble sheet +blanket.

  • PDF

도막.시트 일체형 방수재를 이용한 옥상용 복합방수 공법에 관한 실험적 연구 (An Experimental Study on the Roof Composite Waterproofing Method for Membrane & Sheet Integrated Waterproofing Material)

  • 오미현;박진상;최성민;박영태;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.31-34
    • /
    • 2006
  • In this study on the appliable Asphalt sheet of monolithic and inorganic matter waterproofing material using of field because of problem of complex waterproofing sheet. Before this cement polymer modified waterproof coating and appliable asphalt sheet of monolithic whether have stability by method of construction about all style waterproofing that evaluate to new method of construction development naturally big emphasis put and try to approach. Did performance test item first at, as a result, drew by suitable thing in all KS items. This is considered to have more effective spot construction work because if means that have stability by material as well as method of construction.

  • PDF

가변금형의 박판 성형공정 적용 연구 (Study on Application of Flexible Die to Sheet Metal Forming Process)

  • 허성찬;서영호;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

AZ31 합금 성형에서의 열전달을 고려한 유한요소해석 (Finite element analysis considering heat transfer in sheet metal forming of AZ31)

  • 김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.73-77
    • /
    • 2005
  • In this work, the influences of tool temperature on the formability of AZ31 sheet material in warm deep drawing processes of square cup were investigated. Deep drawing tests under different tool temperatures for magnesium alloy sheet at elevated temperature $250^{\circ}C$, where AZ31 sheet shows a good formability, and FE analyses were carried out. The successfully formed part without any defects was obtained when temperature of tool was over $100^{\circ}C$ while the fracture was occurred at the corner of the square cup below $100^{\circ}C$. It is shown that lower temperature of tool than that of magnesium sheet causes the temperature drop of the material by heat transfer and thus Interrupts the dynamic recrystallization of it. Therefore, in order to obtain successful part of magnesium alloys, it is necessary that the tool temperature is limited to the same or slightly lower temperature than sheet material.

  • PDF

Non-Vinyl Pre-Coated Metal의 스크래치 특성에 관한 연구 (The Research of Scratch Characteristics For Non-Vinyl Pre-Coated Metal Sheet)

  • 김동환;조형근;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.874-877
    • /
    • 2000
  • Pre-coated sheet materials are a cost-effective and environmentally attractive alternative to conventional sheet materials coated after forming. At present but the high scratch sensitivity of coating used for pre-coated metal sheet is a major limitation to use of these materials. Because of high scratch sensitivity, products made by pre-coated metal sheet are not formed by conventional design method. This study has been performed to investigate scratch characteristic of non-vinyl pre-coated metal (PCM) sheet. Using the simple U-bending test equipment, three non-vinyls PCM's were tested. This paper provides the results of bending tests showing the influence of sheet surface texture, tool material and process conditions. It was found that the influence of punch, die clearance and tool material had an effect upon the scratch characteristic.

  • PDF

어독성 실험에 따른 방근재 친환경 특성 분석 (Analyses on Environment-friendliness of Root Barrier Materials based on Fish Toxicity Test)

  • 우지근;김성균
    • 한국환경복원기술학회지
    • /
    • 제13권4호
    • /
    • pp.42-51
    • /
    • 2010
  • The purpose of this study is to analyze the characteristics of environment-friendliness of Root Barrier materials based on comprehensive experiments on harmfulness of Root Barrier materials and fish toxicity of Oryzias latipes mortality to verify eco-toxicity of each method of construction and Root Barrier material, which are to be applied by taking eco-toxicity into account when building ecological flows in upper areas on natural and artificial grounds. As a result, the following conclusions have been reached in this study: 1. In regard of the harmfulness analyzed, each material showed a different result of analytical value in each lab tank. Compared to lab tank, pH (la), DO (lb), T-N (VI) and T-coli (la) were in the same grade, but COD, SS, T-P and F-coli were less than that of control, respectively increased or decreased by material were analyzed. 2. In the experiment of fish toxicity, Barrier sheet was found to have 66.7% of fish mortality, indicating strong fish toxicity. Synthetic rubber system root barrier sheet (20.0%) was analyzed to have medium fish toxicity, while Synthetic resin system root barrier-waterproof sheet (3.3%), Synthetic rubber system membrane root barrier sheet (3.3%) and Synthetic resin system root barrier sheet (0.0%) showed relatively lower mortality and fish toxicity. To sum up such results as found in the experiment mentioned so far, the values of harmfulness and root penetration resistance analyzed were different in each lab tank, but there was absolutely little correlation with the mortality gained from the experiment on fish toxicity. In the experiment of fish toxicity, environment-friendly root barrier materials were analyzed, and it was found that Synthetic resin system root barrier sheet, Synthetic resin system root barrier waterproof sheet and Synthetic rubber system membrane root barrier sheet are highly environment-friendly. In contrast, Synthetic rubber system root barrier sheet was found to have medium-level environment-friendliness. Also, Barrier sheet was analyzed to have low environment-friendliness.

온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구 (Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing)

  • 이영선;이광석;김대용
    • 소성∙가공
    • /
    • 제21권1호
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

중, 고압용 적층 세라믹 캐패시터 제작 및 분석 (Fabrication and Analysis of Multilayer Ceramic Capacitors for Medium and High Voltage)

  • 윤중락;김민기;이헌용;이석원
    • 한국전기전자재료학회논문지
    • /
    • 제18권8호
    • /
    • pp.685-689
    • /
    • 2005
  • In the fabrication and design of MLCCs (Multilayer Ceramic Capacitors) with Ni inner electrode for medium and high voltage, reliability and dielectric breakdown mode have been investigated. For thickness of green sheet, the relationship between the rated voltage versus the thickness of green sheet. Increasing the thickness of green sheet increases the dielectric breakdown voltage. However, a practical limit to this linear relationship occurs at 30 urn and above. As the thickness of green sheet increased, dielectric breakdown voltage and weibull coefficient is increased, but abruptly decrease at 30 urn and 36 urn. When 24 urn of green sheet thickness, weibull coefficient and dielectric breakdown voltage were 13.58 and 70 V/um respectively. The results enabling the MLCCs to demonstrate high levels of reliability at medium and high voltage.

연속 스탬핑 작업시 리어 플로어 성형성 향상기술 개발 (Development of Technique to Improve the Formability of the Rear Floor in Series Stamping Process)

  • 김동환;이정민;고영호;차해규;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2004
  • A fracture was generated by change of clearance and deterioration of material properties on the sheet metal through temperature. This paper describes the results of a prediction about the temperature of the sheet metal during continuous stamping process, because the temperature increase of the sheet metal has a detrimental effect on formability. To analyze the temperature increase of the sheet metal during continuous stamping process, tensile and friction tests were performed from room temperature to 300$^{\circ}C$ at warm condition in this study. As temperature increase, tensile strength, elongation, strain hardening exponent and anisotropy coefficient for each specimens were decreased. On the other hand, friction coefficients were increased. From the FE-simulation results, temperature upward tendency was identified on dies and sheet metal. These observations are rationalized on the basis of the material properties, friction coefficient vs. temperature relationship for the sheet.

  • PDF

후처리를 최소화하는 판재적층방식 쾌속조형기의 개발 (Development of Sheet Deposition Type Rapid Prototyping System Minimizing Post Processing)

  • 조인행;이건우;송용억
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.210-218
    • /
    • 1999
  • Sheet deposition type rapid prototyping system have many advantages : high build speed, low operating cost, large part size, no phase change, no need for support generation, and forth. However, those sheet deposition type rapid prototyping system require an additional post processing to remove excessive material attached to the part. This post processing is time consuming and labor intensive. Moreover, it is difficult for those system to fabricate parts with hollow cores and internal cavities. A new sheet deposition type rapid prototyping system that minimizes the post processing is proposed. The proposed system automatically removes excessive material in a peeling-off process between two cutting processes. In this way, the proposed system can reduce the post-processing time and cost as well as the limitation of the feasible geometric shapes in the conventional sheet deposition system.

  • PDF