• Title/Summary/Keyword: Sheath Dynamics

Search Result 12, Processing Time 0.031 seconds

Analysis of Time-Dependent Behavior of Plasma Sheath using Ion Fluid Model (이온유체방정식을 이용한 Plasma Sheath 시변 해석)

  • Lee, Ho-Jun;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2173-2178
    • /
    • 2007
  • Dynamics of plasma sheath was analyzed using simple ion fluid model with poison equation. Incident ion current, energy, potential distribution and space charge density profile were calculated as a function of time. The effects of initial floating sheath on the evolution of biased sheath were compared with ideal matrix sheath. The effects of finite rising time of pulse bias voltage on the ion current and energy was studied. The influence of surface charging on the evolution of sheath was also investigated

Numerical Investigation of RF Pulsing Effect on Ion Energy Distributions at RF-biased Electrodes

  • Kwon, Deuk-Chul;Song, Mi-Young;Yoon, Jung-Sik
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.265-272
    • /
    • 2014
  • The ion energy distributions (IEDs) arriving at a substrate strongly affect the etching rates in plasma etching processes. In order to determine the IEDs accurately, it is important to obtain the characteristics of radio frequency (rf) sheath at pulsed rf substrates. However, very few studies have been conducted to investigate pulsing effect on IEDs at multiple rf driven electrodes. Therefore, in this work, we extended previous one-dimensional dynamics model for pulsed-bias electrodes. We obtained the IEDs using the developed rf sheath model and observed that numerically solved IEDs are in a good agreement with the experimental results.

Study of Sheath Dynamics in Plasma Source Ion Implantation (플라즈마 이온주입에서 쉬스 동역학에 관한 연구)

  • Kim, G.H.;Cho, C.H.;Choi, Y.W.;Lee, H.S.;Rim, G.H.;Nikiforov, S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1797-1799
    • /
    • 1998
  • Plasma source ion implantation(PSII) is a non-line-of-sight technique for surface modification of materials which is effective for non-planar targets. A apparatus of 30kV PSII is established and plasma characteristics are diagnosed by using a Langmuir probe. A spherical target is immersed in argon plasma and biased negatively by a series of high voltage pulses. Sheath evolution is measured by using a Langmuir probe and compared with the result of computer simulations.

  • PDF

Temperature Measurement Method with Radiation Correction for Very High Temperature Gas (복사 간섭 보정을 통한 초고온 가스 온도 측정 방법)

  • Kim, Chan-Soo;Hong, Sung-Deok;Seo, Dong-Un;Kim, Yong-Wan;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2059-2063
    • /
    • 2008
  • When a thermocouple is placed in a high temperature gas-flow stream, the measured temperature could be biased from the true gas temperature due to a large radiation heat loss from a thermocouple surface to its surroundings. In this study, two thermocouples of unequal diameters with 1/8 inch and 1/16 inch are used to correct the radiation effect. The method is called the reduced radiation error (RRE). The preliminary test results show that the radiation and the sheath conduction cannot be negligible for the gas temperature measurement. To minimize the sheath conduction effect, all the thermocouples will have a grounded junction and 1/8 inch thermocouple will be replaced with 1 mm thermocouples. In addition, the computational fluid dynamics code analysis shows that there is a negligible temperature difference between the positions where the thermocouples were installed.

  • PDF

Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet

  • Peng, Guoyi;Okada, Kunihiro;Yang, Congxin;Oguma, Yasuyuki;Shimizu, Seiji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 2016
  • Concerning the numerical simulation of high-speed water jet with intensive cavitation this paper presents a practical compressible mixture flow method by coupling a simplified estimation of bubble cavitation and a compressible mixture flow computation. The mean flow of two-phase mixture is calculated by URANS for compressible fluid. The intensity of cavitation in a local field is evaluated by the volume fraction of gas phase varying with the mean flow, and the effect of cavitation on the flow turbulence is considered by applying a density correction to the evaluation of eddy viscosity. High-speed submerged water jets issuing from a sheathed sharp-edge orifice nozzle are treated when the cavitation number, ${\sigma}=0.1$, and the computation result is compared with experimental data The result reveals that cavitation occurs initially at the entrance of orifice and bubble cloud develops gradually while flowing downstream along the shear layer. Developed bubble cloud breaks up and then sheds downstream periodically near the sheath exit. The pattern of cavitation cloud shedding evaluated by simulation agrees experimental one, and the possibility to capture the unsteadily shedding of cavitation clouds is demonstrated. The decay of core velocity in cavitating jet is delayed greatly compared to that in no-activation jet, and the effect of the nozzle sheath is demonstrated.

Seasonal Nitrogen Dynamics of Zostera marina Inhabited in Dongdae Bay and Ojiri (동대만과 오지리 연안에 서식하는 해초(Zostera marina)내 질소함유율의 계절적 변화)

  • Kim, Min-Seob;Lee, Sung-Mi;Shin, Kyung-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.186-194
    • /
    • 2006
  • Nitrogen dynamics of Seagrass Zostera marina were investigated in both Dongdae Bay and Ojiri from March to August, 2004. All seagrass samples were separated into four fractions such as leaves (new and adult), sheath and rhizome in order to understand temporal variations of nitrogen content in different fractions of Zostera marina. There are temporal variations of shoot production rates and total nitrogen contents in their different fractions at both study areas. Leaf production were almost 4 to 5 fold higher in summer than in winter. The irradiance is the primary factor controlling the leaf production of Zostera marina in both sites although water temperature also influence its productivity. Nitrogen contents of leaves were overall low in summer than in winter, but nitrogen content of rhizome increased during the summer season. In addition, nitrogen contents of new leaves were mostly higher than adult leaves in spite of lower nitrogen content of new and adult leaves in high productivity period. This result suggests that Zostera marina seems to have significant translocation ability of nitrogen in a shoot. The nitrogen content of leaf tissue may reflect nutritional nitrogen availability.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This thesis investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, it analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. The thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2024
  • This paper investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, this thesis analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. This thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

Effect of Nitrogen on Cell Dynamics at Leaf Growth Zone in Two Rice Varieties

  • Sung, Jwa-Kyung;Lee, Chul-Won;Kim, Tae-Wan;Hwang, Seon-Woong;Song, Beom-Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.121-125
    • /
    • 2004
  • In plants, nitrogen is the major component for growth and development. Leaf growth is based on the division, elongation and maturation of cells, which are used for making of epidermis, mesophyll, bundle sheath, xylem, phloem and so on. Dynamics of these tissues with respect to nitrogen are required for better understanding. This experiment was conducted to evaluate effect of nitrogen on the elongation of epidermal and guard cell of two rice (Oryza sativa L.) varieties, Seoanbyeo and Dasanbyeo on May 2000 at Chungbuk national university in Cheongju. After transplaning the 20-day-old seedlings into a/5000 pots, the main characteristics related with cell elongation were investigated and evaluated. A maximum. leaf length reached at 7 or 8 days after emerging from the collar, and also the leaf elongation rates were greatly affected by the increase of N application rate. The initial and final cell length were about $17\mu\textrm{m}$ and $130\mu\textrm{m}$, respectively. Cell divisions occurred within 1.0mm from leaf base. With die higher nitrogen application rate of 22 kg-N $10\textrm{a}^{-1}$, cell division per hour was greater 1.5 to 1.9 and 1.2 to 1.3 fold as compared to the N application rate of 0 and 11 kg-N $10\textrm{a}^{-1}$, respectively. Cell enlargement of epidermal and guard cell under higher N application rate (22kg-N $10\textrm{a}^{-1}$) was finished within about 20 (Seoanbyeo) and 15 hours (Dasanbyeo), while it took much time, about 30 hours.

The peduncle-specific expression during floral transition by high-throughput transcriptome analysis in wheat

  • Lee, Cheol Won;Seo, Yong Weo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.87-87
    • /
    • 2017
  • Flowering time of either early or late is one of the crucial parameters that determine the crop productivity. Therefore, elucidation of regulatory mechanisms of flowering time should contribute to breeding for yield enhancement. However, comprehensive explanation on molecular mechanism of flowering has not yet been reported in hexaploidy common wheat (Triticum asetivum L.). The mechanism of flowering in wheat has been studied mostly using flag leaf or floral meristem. The exposed peduncle, which is a shoot part between bottom of the spike and flag leaf, could be an important tissue that is responsible for flowering through various molecules expressing. To clarify for transcriptomic dynamics in the wheat peduncle that was uncovered by leaf sheath of flag leaf, RNA sequencing and transcriptomic analysis were conducted. With this, we also analyzed other transcriptomic results deposited in the public DB to identify genes specially expressed in peduncle tissue at transition from vegetative to reproductive phase. The obtained results will provide valuable information to understand the role of peduncle for flowing regulation in wheat aimming for elucidation of the regulatory mechanism of wheat flowering.

  • PDF