• Title/Summary/Keyword: Shear-rate

Search Result 1,312, Processing Time 0.025 seconds

Analysis of Flow around a Rotating Marine Propeller using PIV Techniques

  • Lee Sang Joon;Paik Bu Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.169-175
    • /
    • 2004
  • The characteristics of flow around a rotating propeller were investigated using PIV technique. For each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$four hundred instantaneous velocity fields were ensemble averaged to investigate the spatial evolution of the flow around a propeller. The phase-averaged mean velocity fields show that the viscous wake formed by the boundary layers developed on the blade surfaces and the slipstream contraction in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. The boundary layer developed along the ship hull bottom surface of the ship stern provides a strong turbulent shear layer, affecting the vortex structure in the propeller near-wake. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. The turbulence intensity has large values around the tip and trailing vortices. As the wake moves downstream, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and adjacent wake flow.

  • PDF

Scanning Stereoscopic PIV for 3D Vorticity Measurement

  • SAKAKIBARA Jun;HORI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.1-13
    • /
    • 2004
  • A scanning stereo-PIV system was developed to measure the three-dimensional distribution of three-component velocity in a turbulent round jet. A laser light beam produced by a high repetition rate YLF pulse laser was expanded vertically by a cylindrical lens to form a laser light sheet. The light sheet is scanned in a direction normal to the sheet by a flat mirror mounted on an optical scanner, which is controlled by a programmable scanner controller. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and stereoscopic PIV method was adopted to acquire the 3D-3C-velocity distribution of turbulent round jet in an octagonal tank filled with water. The jet Reynolds number was set at Re=1000 and the streamwise location of the measurement was fixed at approximately x = 40D. Time evolution of three-dimensional vortical structure, which is identified by vorticity, is visualized. It revealed that the existence of a group of hairpin-like vortex structures was quite evident around the rim of the shear layer of the jet. Turbulence statistics shows good agreement with the previous data, and divergence of a filtered (unfiltered) velocity vector field was $7\%\;(22\%)$ of root-me an-squared vorticity value.

  • PDF

The Physical Property of PET Coolness Knitted Fabric for High Emotional Garment (고감성 의류용 PET 냉감 니트 소재의 물성)

  • Kim, Hyun Ah;Woo, Ji Yoon;Kim, Seung Jin
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.114-123
    • /
    • 2014
  • This research investigated the physical properties of PET coolness filaments and their knitted fabrics including dyeing characteristics of these knitted fabrics according to the different dyeing time and temperature. The coolness filament(S) with non-circular cross-section and hydrophilic property was spun and another commercialized coolness(A) and regular(R) PET filaments were prepared for comparing coolness and another physical properties. Qmax of coolness knitted fabric made with S filament was higher than that of R-PET filament, and the maximum value of Qmax of S knitted fabric was shown at the dyeing conditions of temperature, $110^{\circ}C$ with 30 min. or 40min. It was shown that hand of S knitted fabric was a little harsh comparing to A and regular knit specimens, but shape retention and wearing performance of garment made with S knit specimen were estimated as good owing to high bending and shear rigidity. K/S of S knitted fabric was higher than those of regular PET and A knit specimens. Dyeing fastness of coolness knitted fabric showed between 4th and 5th grade.

Numerical Studies of Supersonic Planar Mixing and Turbulent Combustion using a Detached Eddy Simulation (DES) Model

  • Vyasaprasath, Krithika;Oh, Sejong;Kim, Kui-Soon;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.560-570
    • /
    • 2015
  • We present a simulation of a hybrid Reynolds-averaged Navier Stokes / Large Eddy Simulation (RANS/LES) based on detached eddy simulation (DES) for a Burrows and Kurkov supersonic planar mixing experiment. The preliminary simulation results are checked in order to validate the numerical computing capability of the current code. Mesh refinement studies are performed to identify the minimum grid size required to accurately capture the flow physics. A detailed investigation of the turbulence/chemistry interaction is carried out for a nine species 19-step hydrogen-air reaction mechanism. In contrast to the instantaneous value, the simulated time-averaged result inside the reactive shear layer underpredicts the maximum rise in $H_2O$ concentration and total temperature relative to the experimental data. The reason for the discrepancy is described in detail. Combustion parameters such as OH mass fraction, flame index, scalar dissipation rate, and mixture fraction are analyzed in order to study the flame structure.

Applications of Low-voltage Ohmic Process Combined with Temperature Control System to Enhance Salting Process of Pork

  • Hong, Geun-Pyo;Chun, Ji-Yeon;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.32 no.3
    • /
    • pp.293-300
    • /
    • 2012
  • This study investigated the effects of a low-voltage ohmic heating process (2.5 and 3.8 V/cm) on the thawing characteristics and NaCl diffusion of pork. The thawing rate of pork was dependent on the applied voltages and brine salinities, and few differences were obtained in pork quality parameters (color, water-holding capacity, and shear force) regarding the different treatments. The NaCl concentration of pork after ohmic thawing was higher than that following brine-immersion thawing, however, the NaCl diffusion did not differ from when fresh meat was immersed in brine. For application of the ohmic process in fresh pork, various ohmic pulses were generated in order to prevent the meat from overheating, and the results indicated that the ohmic process was a better way to enhance NaCl diffusion compared with immersing pork at high temperature. Although the mechanisms involved in NaCl diffusion at low-voltage electric field strength were unclear, the present study demonstrated that the ohmic process has a potential benefit in the application of meat processing.

Azisymmetric Nonlinear Consolidation Analysis for Drainage-Installed Compressible Deposits (배수재가 설치된 압축성 지반의 축대칭 비선형 압밀해석)

  • 김윤태;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.5-20
    • /
    • 1996
  • In order to accelerate the rate of consolidation settlement and to gain a required shear strength for a given soft clay deposit, the preloading technique combined with a vertical drainage system has been widely applied. In this'study, the theory of axisymmetric consolidation which considers the variation of compressibility and permeability during the conslidation process, has ben developed. A computer program named AXICON for the analysis of axisymmetric nonlinear consolidation is developed by adopting an explicit finite difference method. Smear and well resistance effects are also considered. The AXICON is capable of analyzing the consolidation behavior of multi -layered deposits and simulates time dependent loading sequence. The results of AXICON are validated with analytical solutions of Hansbo and Barron, and compared with insitu settlements and pore pressures measured in a soft clay deposit.

  • PDF

Numerical simulation of reinforced concrete nuclear containment under extreme loads

  • Tamayo, Jorge Luis Palomino;Awruch, Armando Miguel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.799-823
    • /
    • 2016
  • A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is presented in this work. The impact is modeled by using an uncoupled approach in which a load function is applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The concrete in compression is modeled by using a modified $Dr{\ddot{u}}cker$-Prager elasto-plastic constitutive law where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking approach where the tension-stiffening effect is included via a strain-softening rule. A model based on fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. Two benchmarks are used to verify the numerical implementation of the present model. Results are presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the numerical modeling are analyzed.

Rheological Properties of a Partially Vulcanized Filled EPDM (부분적으로 가황된 EPDM 배합의 유변학적 특성)

  • Kim, Sang-Koo;Lee, Suck-Hyun
    • Elastomers and Composites
    • /
    • v.22 no.3
    • /
    • pp.213-218
    • /
    • 1987
  • In this study, the rheological properties of a partially valcanized black filled EPDM were investigated as a function of degree of crosslinks using capillary rheometer. In order to obtain the samples having various degree of crosslinks between 0 and 6 percent, the vulcanization kinetics was also studied by Monsanto rheometer. The results showed that the die swell ana the pressure drop at the capillary entrance and exit increase nearly linearly with the increase in degree of crosslinks. However, melt fracture occurred at a lower shear rate for the samples of higher degree of crosslinks. These results were discussed in terms of the melt elasticity produced at the entrance region of capillary by the partial vulcanization. It is also interesting to note that the fluctuation of die swell during the practical extrusion or calendering process in the factories can be caused by the partial vulcanization occurred during the process.

  • PDF

Interfacial Adhesion of Silk/PLA Biocomposites by Plasma Surface Treatment (플라즈마 표면처리에 의한 Silk/PLA 바이오복합재료의 계면접착)

  • Chu, Bo Young;Kwon, Mi Yeon;Lee, Seung Goo;Cho, Donghwan;Park, Won Ho;Han, Seong Ok
    • Journal of Adhesion and Interface
    • /
    • v.5 no.4
    • /
    • pp.9-16
    • /
    • 2004
  • Silk fibers were subjected to argon and ethylene plasma treatments in order to improve the interfacial adhesion with polylactic acid (PLA). After the plasma surface treatment, the surface morphology and surface adhesion of silk fibers to the PLA resin were largely changed. Various plasma treatment conditions were used in this work: 10, 25, 50, 100 and 150 W of electric power, 1, 3, 5, 7 and 10 minutes of treatment time, and 10 and 50 sccm of a gas flow rate. The interfacial shear strength of plasma-treated Silk/PLA biocomposites was measured by a single fiber micro-droplet debonding test method. The result provided an optimal plasma treatment condition to obtain the improved interfacial adhesion in the Silk/PLA biocomposites.

  • PDF

Geometrical Effects of an Active Casing Treatment on Aerodynamic Performance of a Centrifugal Compressor (능동형 케이싱 트리트먼트의 형상 변화가 원심압축기의 공력성능에 미치는 영향)

  • Ma, Sang-Bum;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.5-12
    • /
    • 2016
  • In this study, a parametric study on a cavity as casing treatment of a centrifugal compressor has been conducted using three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model. Two kinds of cavity were applied at choke and surge conditions, respectively, in this work. Inlet and outlet port widths, angle of outlet port, and length of cavity were chosen as the geometric parameters and investigated to find their effects on the aerodynamic performances such as adiabatic efficiency at design mass flow rate and stall margin of the centrifugal compressor. It was found that the aerodynamic performances of the centrifugal compressor were affected considerably by the four geometric parameters. The adiabatic efficiency was hardly changed by the geometric parameters, excepts for the angle of outlet port. With an increase in the angle of outlet port, the adiabatic efficiency and the stall margin decreased. The stall margin was more sensitive to the outlet port width than to the other geometric parameters. And, with a decrease in the outlet port width, the stall margin increased by 2% compared to that of the reference.