• Title/Summary/Keyword: Shear wave

Search Result 952, Processing Time 0.027 seconds

Flow Visualization of Acoustic Streaming Induced by Ultrasonic Vibration Using Particle Imaging Velocimetry (PIV를 이용한 초음파 진동에 의해 유도된 음향유동의 가시화)

  • 노병국;권기정;이장연;이동렬
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.528-535
    • /
    • 2004
  • Ultrasonic Vibrator is designed to achieve the maximum vibration amplitude at 30 kHz by in-cluding a horn (diameter, 40 mm), mechanical vibration amplifier at the top of the ultrasonic vibrator in the system and making the complete system resonate. In addition, it is experimentally visualized by particle imaging velocimetry (PIV) that the acoustic streaming velocity in the gap is at maximum when the gap between the ultrasonic vibrator and stationary plate agrees with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave and the theoretical analysis of that is also accomplished and verified by experiment. It is observed that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary plate possibly changes due to the measurement of the average velocity fields of the acoustic streaming induced by the ultrasonic vibration at resonance and non-resonance. There exists extremely small average velocity at non-resonant gaps while the relatively large average velocity exists at resonant gaps compared with non-resonant gaps. It also reveals that there should be larger axial turbulent intensity at the hub region of the vibrator and at the edge of it in the resonant gap where the air streaming velocity is maximized and the flow phenomena is conspicuous than that at the other region. Because the variation of the acoustic streaming velocity at resonant gap is more distinctive than that at non-resonant gap, shear stress increases more in the resonant gap and is also maximized at the center region of the vibrator except the local position of center (r〓0). At the non-resonant gap there should be low values of vorticity distribution, but in contrast to the non-resonant gap, high and negative values of it exist at the center region of the vibrator with respect to the radial direction and in the vicinity of the middle region with respect to the axial direction. Acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover, the proposed method by acoustic streaming can be utilized to the nano and micro-electro mechanical systems as a driving mechanism in addition to the augmentation of the streaming velocity.

Evaluation of Adhesive Strength for Nano-Structured Thin Film by Scanning Acoustic Microscope (초음파 현미경을 이용한 나노 박막의 접합 강도 평가)

  • Park, Tae-Sung;Kwak, Dong-Ryul;Park, Ik-Keun;Miyasaka, Chiaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • In recent years, nano-structured thin film systems are often applied in industries such as MEMS/NEMS device, optical coating, semiconductor or like this. Thin films are used for many and varied purpose to provide resistance to abrasion, erosion, corrosion, or high temperature oxidation and also to provide special magnetic or dielectric properties. Quite a number of articles to evaluate the characterization of thin film structure such as film density, film grain size, film elastic properties, and film/substrate interface condition were reported. Among them, the evaluation of film adhesive to substrate has been of great interest. In this study, we fabricated the polymeric thin film system with different adhesive conditions to evaluate the adhesive condition of the thin film. The nano-structured thin film system was fabricated by spin coating method. And then V(z) curve technique was applied to evaluate adhesive condition of the interface by measuring the surface acoustic wave(SAW) velocity by scanning acoustic microscope(SAM). Furthermore, a nano-scratch technique was applied to the systems to obtain correlations between the velocity of the SAW propagating within the system including the interface and the shear adhesive force. The results show a good correlation between the SAW velocities measured by acoustic spectroscope and the critical load measured by the nano-scratch test. Consequently, V(z) curve method showed potentials for characterizing the adhesive conditions at the interface by acoustic microscope.

Geophysical Imaging of Alluvial Water Table and the underlying Layers of Weathered and Soft Rocks (충적층 지하수면 및 그 하부의 풍화암/연암의 경계면 파악을 위한 복합 지구물리탐사)

  • Ju, Hyeon-Tae;Lee, Chul-Hee;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2015
  • Although geophysical methods are useful and generally provide valuable information about the subsurface, it is important to recognize their limitations. A common limitation is the lack of sufficient contrast in physical properties between different layers. Thus, multiple methods are commonly used to best constrain the physical properties of different layers and interpret each section individually. Ground penetrating radar (GPR) and shallow seismic reflection (SSR) methods, used for shallow and very shallow subsurface imaging, respond to dielectric and velocity contrasts between layers, respectively. In this study, we merged GPR and SSR data from a test site within the Cheongui granitic mass, where the water table is ~3 m deep all year. We interpreted the data in combination with field observations and existing data from drill cores and well logs. GPR and SSR reflections from the tops of the sand layer, water table, and weathered and soft rocks are successfully mapped in a single section, and they correlate well with electrical resistivity data and SPS (suspension PS) well-logging profiles. In addition, subsurface interfaces in the integrated section correlate well with S-wave velocity structures from multi-channel analysis shear wave (MASW) data, a method that was recently developed to enhance lateral resolution on the basis of CMP (common midpoint) cross-correlation (CMPCC) analysis.

A comparative study of borehole size and tool effect on dispersion curves (시추공경과 공내검층기가 분산곡선에 미치는 영향에 대한 비교 연구)

  • Zhao, Weijun;Kim, Jong-Man;Kim, Yeong-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.154-162
    • /
    • 2009
  • Sonic wave dispersion characteristics are one of the most important targets of study, particularly in estimating shear wave velocity from borehole sonic logging. We have tested dispersion characteristics using monopole and dipole sources. Theoretical dispersion curves were computed for tool-absent and tool-included models having the same physical properties but different diameters (including ${\Phi}520mm$, ${\Phi}150mm$, and ${\Phi}76mm$). Comparisons were made between boreholes of different sizes and between tool-absent and tool-included models. Between the tool-included and the tool-absent boreholes, a close similarity in dispersion curve shape was revealed for the monopole source, and a significant difference was shown for the dipole source. However, for the cut-off frequency, particularly in the engineering boreholes (${\Phi}76mm$ and ${\Phi}50mm$), a significant difference was observed for signals from the monopole source, but approximately the same cut-off frequencies were found with the dipole source. This indicates the need of careful choice of source frequency in monopole-source sonic logging, particularly in an engineering borehole. The results of numerical experiments show that cut-off frequency is exponentially proportional to the inverse of borehole radius, irrespective of the mode type and the presence of a tool, and that the cut-off frequencies for each borehole environment could be expressed as an exponential function, rather than the inversely proportional relationship between the cut-off frequency and the borehole radius that was previously generally recognised. From the direct comparison of dispersion curves, the effects on the dispersion characteristics of borehole size and the presence of the tool can be revealed more clearly than in previous studies, which presented the dispersion curve and/or characteristics for each borehole environment separately.

Analysis of Site Amplification of Seismic Stations using Odesan Earthquake (오대산지진 자료를 이용한 국내 지진관측소 부지의 지반증폭특성 연구)

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • Site amplification should be considered in order to estimate Soil-Structure Interaction (SSI), seismic source and attenuation parameters with a greater degree of reliability. The horizontal to vertical (H/V) ratio technique, originally proposed by Nakamura (1989), has been applied to analyze the surface waves in microtremor records. Recently, its application has been extended to the shear wave energy of strong motion in order to study the site transfer function. The purpose of this paper is to estimate the H/V spectral ratio using the observed data from 9 seismic stations distributed within the Southern Korean Peninsula, from the Odesan earthquake (2007/01/20). The results show that most of the stations have more stable amplification characteristics in a low frequency band than in a high frequency band. However, each seismic station showed its own characteristic resonant frequency and low and high frequency. The resonant frequency at each station should be estimated carefully, because the quality of seismic data is dependent on the resonant frequency. It can be obtained more reliable results of seismic source and attenuation parameters, if seismic ground motions which deconvolved from site transfer function is used. The site amplification data from this study can be used to generally classify the sites within the Southern Korean Peninsula.

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF

Passive Control of the Supersonic Cavity Pressure Oscillations Using Porous Vertical Barrier (수직 다공벽을 이용한 초음속 공동 압력진동의 피동제어)

  • Kang, Min-Sung;Kwon, Joon-Kyeong;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2009
  • A computational study has been performed out to evaluate the effect of a vertical porous barrier on the pressure oscillations in a supersonic cavity. The porous barriers with different perforations were vertically installed into a rectangular cavity at Mach numbers 1.50, 1.83 and 2.50. TVD finite difference MUSCL scheme was employed to solve the two-dimensional, unsteady, compressible Navier-Stokes equations. The present vertical porous barrier considerably altered the characteristics of the time-dependent shear layers that occur at the upstream edge of cavity and remarkably reduced the pressure oscillations inside the supersonic cavity. The present results showed that the effectiveness of passive control using the present porous vertical barrier is dependent on Mach number and the perforation of the porous barrier.

Verification and Mitigation of Seismic Failure in Concrete Piers under Near-field Earthquakes

  • Ikeda, Shoji;Hayashi, Kazuhiko;Naganuma, Toshihiko
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.1-11
    • /
    • 2007
  • This paper verifies the difference of the seismic behavior and seismic damage of the neighboring two reinforced concrete piers damaged by the 1995 Hyogoken Nanbu earthquake. The two piers were almost the same size, carrying slightly different dead load, and were provided with the same reinforcement arrangement except the amount of longitudinal reinforcement at the bottom portion of the piers. The pier with more reinforcement was completely collapsed due to this near field earthquake by shear failure at the longitudinal reinforcement cut-off while the other was only damaged at the bottom by flexure even though the longitudinal reinforcement cut-off was also existed at the mid height of the pier. According to the results of the pseudo dynamic test, the seismic damage was recognized to be greatly dependent on the ground motion characteristics even though the employed ground motions had the same peak acceleration. The severe damage was observed when the test employed the seismic wave that had strong influence to the longer period range compared to the initial natural period of the pier. On the other hand, based on the similar model experiment, the defect of gas-pressure welded splice of longitudinal reinforcement was revealed to save the piers against collapse due to the so-called fail-safe mechanism contrary to the intuitive opinion of some researchers. It was concluded that the primary cause of the collapse of the pier was the extremely strong intensity and peculiar characteristics of the earthquake motion according to both the site-specific and the structure-specific effects.

Site Classification and Design Response Spectra for Seismic Code Provisions - (II) Proposal (내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (II) 제안)

  • Cho, Hyung Ik;Satish, Manandhar;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.245-256
    • /
    • 2016
  • In the companion paper (I - Database and Site Response Analyses), site-specific response analyses were performed at more than 300 domestic sites. In this study, a new site classification system and design response spectra are proposed using results of the site-specific response analyses. Depth to bedrock (H) and average shear wave velocity of soil above the bedrock ($V_{S,Soil}$) were adopted as parameters to classify the sites into sub-categories because these two factors mostly affect site amplification, especially for shallow bedrock region. The 20 m of depth to bedrock was selected as the initial parameter for site classification based on the trend of site coefficients obtained from the site-specific response analyses. The sites having less than 20 m of depth to bedrock (H1 sites) are sub-divided into two site classes using 260 m/s of $V_{S,Soil}$ while the sites having greater than 20 m of depth to bedrock (H2 sites) are sub-divided into two site classes at $V_{S,Soil}$ equal to 180 m/s. The integration interval of 0.4 ~ 1.5 sec period range was adopted to calculate the long-period site coefficients ($F_v$) for reflecting the amplification characteristics of Korean geological condition. In addition, the frequency distribution of depth to bedrock reported for Korean sites was also considered in calculating the site coefficients for H2 sites to incorporate sites having greater than 30 m of depth to bedrock. The relationships between the site coefficients and rock shaking intensity were proposed and then subsequently compared with the site coefficients of similar site classes suggested in other codes.

Quantitative Analysis of Enlarged Cervical Lymph Nodes with Ultrasound Elastography

  • Zhang, Jun-Peng;Liu, Hua-Yan;Ning, Chun-Ping;Chong, Jing;Sun, Yong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7291-7294
    • /
    • 2015
  • Purpsoe: To investigate the diagnostic value of quantitative analysis of a tissue diffusion and virtual touch tissue imaging quantification (VTIQ) technique with acoustic radiation force impulse (ARFI) elastography for assessing enlarged cervical lymph nodes. Materials and Methods: Fifty-six enlarged cervical lymph nodes confirmed by pathologic diagnoses were covered in the study. According to the results of pathologic diagnosis, patients were classified into benign and malignant groups. All the patients were examined by both conventional ultrasonography and elastography. AREA% and shear wave velocity (SWV) in ROI of different groups were calculated and compared using ROC curves. Cut-off points of AREA% and SWV were determined with receiver operating characteristic curves. Results: Final histopathological results revealed 21 cases of benign and 35 cases of malignant lymph nodes. The mean values of AREA% and SWV in benign and malignant groups were $45.0{\pm}17.9%$ and $2.32{\pm}0.57m/s$, and $61.3{\pm}21.29%$ and $4.36{\pm}1.25$)m/s, respectively. For the parameters of elastography, "AREA%" and SWV demonstrated significant differences between groups (p=0.002). AREA% was positively correlated with SWV with a correlation coefficient of 0.809 (P<0.001). Conclusions: Stiffness of different lymph node diseases in patients may differ. Elastography can evaluate changes sensitively and provide valuable information to doctors. The study proved that the VTIQ elastography technique can play an important role in differential diagnosis of lymph nodes.