A comparative study of borehole size and tool effect on dispersion curves

시추공경과 공내검층기가 분산곡선에 미치는 영향에 대한 비교 연구

  • Zhao, Weijun (Centre for Northeast Asian Studies, Tohoku University) ;
  • Kim, Jong-Man (Department of Geophysics, Kangwon National University) ;
  • Kim, Yeong-Hwa (Department of Geophysics, Kangwon National University)
  • 조유준 (토호쿠대학교 북동아시아 연구센터) ;
  • 김종만 (강원대학교 지구물리학과) ;
  • 김영화 (강원대학교 지구물리학과)
  • Published : 2009.02.28

Abstract

Sonic wave dispersion characteristics are one of the most important targets of study, particularly in estimating shear wave velocity from borehole sonic logging. We have tested dispersion characteristics using monopole and dipole sources. Theoretical dispersion curves were computed for tool-absent and tool-included models having the same physical properties but different diameters (including ${\Phi}520mm$, ${\Phi}150mm$, and ${\Phi}76mm$). Comparisons were made between boreholes of different sizes and between tool-absent and tool-included models. Between the tool-included and the tool-absent boreholes, a close similarity in dispersion curve shape was revealed for the monopole source, and a significant difference was shown for the dipole source. However, for the cut-off frequency, particularly in the engineering boreholes (${\Phi}76mm$ and ${\Phi}50mm$), a significant difference was observed for signals from the monopole source, but approximately the same cut-off frequencies were found with the dipole source. This indicates the need of careful choice of source frequency in monopole-source sonic logging, particularly in an engineering borehole. The results of numerical experiments show that cut-off frequency is exponentially proportional to the inverse of borehole radius, irrespective of the mode type and the presence of a tool, and that the cut-off frequencies for each borehole environment could be expressed as an exponential function, rather than the inversely proportional relationship between the cut-off frequency and the borehole radius that was previously generally recognised. From the direct comparison of dispersion curves, the effects on the dispersion characteristics of borehole size and the presence of the tool can be revealed more clearly than in previous studies, which presented the dispersion curve and/or characteristics for each borehole environment separately.

단극 및 쌍극 음원을 이용하여 S파속도 결정에 큰 영향을 미치는 분산특성을 연구하였다. 이를 위하여 동일한 물성을 가지면서 공경을 달리하는 3종류의 시추공모형(${\Phi}520\;mm$. ${\Phi}150\;mm$and ${\Phi}76\;mm$)을 중심으로 이른 분산곡선을 구하고 공경과 공내검층기 존재 유무에 따른 분산 특성의 변화를 비교 분석하였다. 분산곡선의 형태는 단극음원에서 시추공 내의 공내검층기 유무에 크게 영향을 받지 않고 비슷하게 나타난 반면에 쌍극음원에서는 공내검층기 유무가 큰 차이를 보였다. 반면에 절단주파수에서는 쌍극음원에 비하여 단극음원에서 공내검층기 유무에 따른 차이가 크며 특히 소구경 시추공에서 큰 차이를 보여 단극음원을 이용한 토목시추공 음파검층에서 주파수 선택이 매우 중요한 변수가 될 수 있음을 보였다. 수치모델링결과, 절단주파수와 시추공경과의 관계는 기존에 알려진 일반적인 반비례 관계보다는 지수함수적으로 감소하는 관계임을 확인하였으며, 분산모드의 종류나 공내검층기 유무에 상관없이 각 환경에 있어서의 절단주파수 값을 지수함수로 표시할 수 있었다. 특정 시추공 환경에서의 분산곡선 및 분산특성들은 과거 연구결과들로부터 비교적 잘 알려져 있지만 분산곡선의 직접 비교에 의하여 분산특성에 미치는 시추공경과 공내측정기 영향을 보다 구체적으로 밝힐 수 있었다.

Keywords

References

  1. Aki, K., and Richards, P. G., 1980, Quantitative seismology theory and methods, 1, W.H. Freeman and Company, 556
  2. Biot, M. A., 1952, Propagation of elastic waves in a cylindrical bore containing a fluid: Journal of Applied Physics, 23, 997–1005. doi: 10.1063/1.1702365
  3. Cheng, C. H., and Toksöz, M. N., 1981, Elastic wave propagation in a fluidfilledborehole and synthetic acoustic logs: Geophysics, 46, 1042–1053. doi: 10.1190/1.1441242
  4. Hsu, C., and Sinha, B. K., 1998, Mandrel effects on the dipole flexural modein a borehole: Journal of the Acoustical Society of America, 104, 2025–2039. doi: 10.1121/1.423767
  5. Kimball, C. V., and Marzetta, T. L., 1984, Semblance processing of boreholeacoustic array data: Geophysics, 49, 274–281. doi: 10.1190/1.1441659
  6. Kurkjian, A. L., and Chang, S., 1986, Acoustic multipole sources in fluidfilledboreholes: Geophysics, 51, 148–163. doi: 10.1190/1.1442028
  7. Lee, S., Kim, Y., and Hwang, B. C., 2008, An experimental study on log correction for plastic cased slim boreholes: Journal of Korean Society of Engineering Geology, 18, 137–144
  8. Paillet, F. L., and Cheng, C. H., 1991, Acoustic waves in boreholes, CRC press, 264
  9. Paillet, F. L., and White, J. E., 1982, Acoustic modes of propagation in theborehole and their relationship to rock properties: Geophysics, 47, 1215–1228. doi: 10.1190/1.1441384
  10. Rao, V. N. R., Burns, D. R., and Toksoz, M. N., 1999, Models in LWD applications, M.I.T., Earth Resources Laboratory Annual Report, 5–14
  11. Rao, V. N., Zhu, Z., Burns, D. R., and Toksoz, M. N., 2002, Acoustic logging while drilling (LWD): Experimental Studies with Anisotropic media, M.I.T. Earth Resources Laboratory Annual Report, 18
  12. Sinha, B. K., and Asvadurov, S., 2004, Dispersion and radial depth of investigation of borehole modes: Geophysical Prospecting, 52, 271–286. doi: 10.1111/j.1365-2478.2004.00415.x
  13. Zhao, W., 2008, Numerical experiments on full waveform logging in slim boreholes, Ph.D. thesis, Kangwon National University. 125