• 제목/요약/키워드: Shear strengthening

검색결과 375건 처리시간 0.025초

14K 화이트-레드골드의 확산접합 공정에 따른 접합 물성 연구 (Bonding Properties of 14K White-Red Gold Alloy by Diffusion Bonding Process)

  • 송정호;송오성
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.386-391
    • /
    • 2017
  • Using a customized diffusion bonder, we executed diffusion bonding for ring shaped white gold and red gold samples (inner, outer diameter, and thickness were 15.7, 18.7, and 3.0 mm, respectively) at a temperature of $780^{\circ}C$ and applied pressure of 2300 N in a vacuum of $5{\times}10^{-2}$ torr for 180 seconds. Optical microscopy, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to investigate the microstructure and compositional changes. The mechanical properties were confirmed by Vickers hardness and shear strength tests. Optical microscopy and FE-SEM confirmed the uniform bonding interface, which was without defects such as micro pores. EDS mapping analysis confirmed that each gold alloy was 14K with the intended composition; Ni and Cu was included as coloring metals in the white and red gold alloys, respectively. The effective diffusion coefficient was estimated based on EDS line scanning. Individual values of Ni and Cu were $5.0{\times}10^{-8}cm^2/s$ and $8.9{\times}10^{-8}cm^2/s$, respectively. These values were as large as those of the melting points due to the accelerated diffusion in this customized diffusion bonder. Vickers hardness results showed that the hardness values of white gold and red gold were 127.83 and 103.04, respectively, due to solid solution strengthening. In addition, the value at the interface indicated no formation of intermetallic compound around the bonding interface. From the shear strength test, the sample was found not to be destroyed at up to 100,000 gf due to the high bonding strength. Therefore, these results confirm the successful diffusion bonding of 14K white-red golds with a diffusion bonder at a low temperature of $780^{\circ}C$ and a short processing time of 180 seconds.

강판으로 보강된 RC보의 에폭시-콘크리트 계면의 부착특성 (Bonding Properties of Epoxy-Concrete Interface in RC Beams Strengthened by Steel Plate)

  • 박윤제;신동혁;이광명;신현목
    • 콘크리트학회논문집
    • /
    • 제13권3호
    • /
    • pp.221-227
    • /
    • 2001
  • 강판으로 철근콘크리트 보를 휨보강하면 보의 강성과 강도는 현저하게 증가하나 부착면에서의 조기파괴로 인하여 충분한 연성을 발휘하지 못하는 경우가 자주 발생한다. 본 연구에서는 에폭시와 콘크리트 계면에서의 부착파괴 메카니즘을 규명하기 위하여 Mohr-Coulomb 규준을 채택하였으며, 에폭시-콘크리트 계면의 부착특성을 결정하기 위하여 사전단 부착실험, 직접전단 부착실험 및 휨보강 부재실험을 수행하였다. 실험과 수치해석을 통하여 에폭시-콘크리트 계면의 내부마찰각이 45$^{\circ}$ 일 때 점착력은 50 kgf/$\textrm{cm}^2$~70 kgf/$\textrm{cm}^2$을 얻었으며, 이를 강판으로 보강된 RC보의 구조계산에 적용하여 파괴하중을 예측함으로써 보강보의 조기파괴를 효과적으로 방지할 수 있을 것으로 판단된다.

탄소섬유 앵커 X-브레이싱으로 보강된 철근콘크리트 기둥의 구조거동 및 내진보강 효과 (Retrofitting Effects and Structural Behavior of RC Columns Strengthened with X-Bracing Using Carbon Fiber Anchor)

  • 심종성;이강석;권혁우;김현중
    • 콘크리트학회논문집
    • /
    • 제24권3호
    • /
    • pp.323-331
    • /
    • 2012
  • 이 논문에서는 콘크리트 기둥에 새로운 보강방법을 제시하여 반복하중에 대한 구조적인 성능시험을 하였다. 두 개의 콘크리트 기둥에 고성능 탄소섬유 다발을 이용하여 X자 형태의 보강을 실시하고, 기둥의 내부에 X-브레이싱을 고정하기 위해 기둥 단면을 천공하여 탄소섬유 다발을 기둥에 삽입한 후 탄소섬유로 단부를 감싸주는 새로운 보강방법인 탄소섬유 앵커 X-브레이싱 보강공법을 이용해 콘크리트 기둥의 구조성능과 보강효과를 시험을 통하여 규명하였다. 이를 위해 탄소섬유로 보강된 휨 파괴형 실험체 기둥과 전단 파괴형 실험체 기둥을 축소모형으로 각각 제작하였다. 휨과 전단저항 기둥에 대해 X-브레이스 보강 유, 무 실험체에 반복하중시험을 통해 기둥의 연성과 강도 보강효과를 확인하였다.

Rehabilitation of normal and self-compacted steel fiber reinforced concrete corbels via basalt fiber

  • Gulsan, Mehmet Eren;Al Jawahery, Mohammed S.;Alshawaf, Adnan H.;Hussein, Twana A.;Abdulhaleem, Khamees N.;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • 제6권5호
    • /
    • pp.423-463
    • /
    • 2018
  • This paper investigates the behavior of normal and self-compacted steel fiber reinforced concrete (SCC-SFRC) corbels rehabilitated by Basalt Fiber Mesh (BFM) and Basalt Fiber Fabric (BFF) for the first time in literature. The research objective is to study the effectiveness of BFM and BFF in the rehabilitation of damaged reinforced concrete corbels with and without epoxy injection. The experimental program includes two types of concrete: normal concrete, and self-compacted concrete. For normal concrete, 12 corbels were rehabilitated by BFM without injection epoxy in cracks, with two values of compressive strength, three ratios of steel fiber (SF), and two values of shear span. For self-compacted concrete, 48 corbels were rehabilitated with different parameters where 12 corbels were rehabilitated by BFM with and without epoxy injection, 18 heated corbels with three different high-temperature level were rehabilitated by repairing cracks only by epoxy injection, and 18 heated corbels with three different high-temperature level were rehabilitated by repairing cracks by epoxy and wrapping by BFF. All 48 corbels have two values of compressive strength, three values volumetric ratios of SF, and two values of the shear span. Test results indicate that RC corbels rehabilitated by BFM only without injection did not show any increase in the ultimate load capacity. Moreover, For RC corbels that were repaired by epoxy without basalt wrapping, the ultimate load capacities showed an increase depending on the mode of failure of corbels before the rehabilitation. However, the rehabilitation with only crack repairing by epoxy injection is more effective on medium strength corbels as compared to high strength ones. Finally, it can be concluded that use of BFF is an effective and powerful technique for the strengthening of damaged RC corbels.

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF

Effect of curing conditions on mode-II debonding between FRP and concrete: A prediction model

  • Jiao, Pengcheng;Soleimani, Sepehr;Xu, Quan;Cai, Lulu;Wang, Yuanhong
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.635-643
    • /
    • 2017
  • The rehabilitation and strengthening of concrete structures using Fiber-Reinforced Polymer (FRP) materials have been widely investigated. As a priority issue, however, the effect of curing conditions on the bonding behavior between FRP and concrete structures is still elusive. This study aims at developing a prediction model to accurately capture the mode-II interfacial debonding between FRP strips and concrete under different curing conditions. Single shear debonding experiments were conducted on FRP-concrete samples with respect to different curing time t and temperatures T. The J-integral formulation and constrained least square minimization are carried out to calibrate the parameters, i.e., the maximum slip $\bar{s}$ and stretch factor n. The prediction model is developed based on the cohesive model and Arrhenius relationship. The experimental data are then analyzed using the proposed model to predict the debonding between FRP and concrete, i.e., the interfacial shear stress-slip relationship. A Finite Element (FE) model is developed to validate the theoretical predictions. Satisfactory agreements are obtained. The prediction model can be used to accurately capture the bonding performance of FRP-concrete structures.

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

Numerical and analytical investigation of parameters influencing the behavior of shear beams strengthened by CFRP wrapping

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Sakir Yazman;Mohammed Alsdudi;Lokman Gemi;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.217-238
    • /
    • 2023
  • In this study, a parametric study was performed considering material properties of concrete, material properties of steel, the number of longitudinal reinforcement (reinforcement ratio), CFRP ply orientations, a number of layers as variables by using ABAQUS. Firstly, the parameters used in the Hashin failure criteria were verified using four coupon tests of CFRP. Secondly, the numerical models of the beams strengthened by CFRP were verified using five experimental data. Finally, eighty numerical models and eighty analytic calculations were developed to investigate the effects of the aforementioned variables. The results revealed that in the case of using fibrous polymer to prevent shear failure, the variables related to reinforced concrete significantly affected the behavior of specimens, whereas the variables related to CFRP composite have a slight effect on the behavior of the specimens. As a result of numerical analysis, while the increase in the longitudinal tensile and compression reinforcement, load bearing capacity increases between 23.6%-70.7% and 5.6%-12.2%, respectively. Increase in compressive strength (29 MPa to 35 MPa) leads to a slight increase in the load-carrying capacity of the specimens between 4.6% and 7.2%. However, the decrease in the compressive strength (29 MPa to 20 MPa) significantly affected (between 6.4% and 8.1% decrease observed) the behavior of the specimens. As the yield strength increases or decreases, the capacity of specimens increase approximately 27.1% or decrease 12.1%. The effects of CFRP ply orientation results have been obtained as a negligible well approximately 3.7% difference. An increasing number of CFRP layers leads to almost no effect (approximately 2.8%) on the behavior of the specimen. Finally, according to the numerical analysis, the ductility values obtained between 4.0 and 6.9 indicate that the beams have sufficient ductility capacity.

GFRP Rebar로 보강된 콘크리트보의 피로 휨·부착성능에 관한 실험적 연구 (An Experimental Study on the Fatigue Flexural Bonding Characteristic of Concrete Beam Reinforced with GFRP Rebar)

  • 오홍섭;심종성;강태성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.101-108
    • /
    • 2008
  • 본 연구에서는 철근과 같은 기계적 맞물림 현상을 활용하기 위하여 이형리브가 형성되어 있는 GFRP 보강근을 제작하여 철근대체 재료로 사용하기 위해 FRP 보강근의 부착성능을 규명하고자 한다. 하지만 지금까지 많은 기존 연구자들이 부착성능에 대한 실험으로 단순 1방향(수직, 수평)인장실험으로 철근과 콘크리트 또는 FRP 보강근과 콘크리트사이의 부착특성을 고찰하여 두 재료 사이의 부착-슬립에 관한 제안식을 도출해왔다. 국내에서는 아직까지 GFRP 보강근의 부착에 대한 관심이 증대대고 있는 실정이지만 피로부착에 관한연구는 미흡한 편이이어서 GFRP 보강근의 피로 연구가 필요로 하다. 본 연구에서는 BRITISH STANDARD에서 규정하고 있는 방법에 의하여 휨 부착 시험체를 제작하여 정적 휨 부착실험 최대파괴하중의 70% ~ 90%의 하중으로 반복하중재하 후 정적실험을 통하여 GFRP로 보강된 콘크리트 피로부착 성능을 검증하였다.

구조보강용 FRP 함침·접착수지의 역학적 특성 분석을 위한 시험방법 비교 연구 (Comparative Study on Test Methods for Mechanical Properties of Structural Adhesives Used in FRP Strengthening)

  • 유영찬;최기선;김긍환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.103-112
    • /
    • 2008
  • FRP와 콘크리트의 접착강도를 평가하기 위해 현장에서 일반적으로 사용되는 Pull-off 실험방법은 FRP 복합체의 손상을 초래하며 더욱이 FRP의 최대 pull-off 강도가 콘크리트의 인장강도에 의해 제한되는 단점을 지니고 있다. 이에 따라 구조보강용 접착제의 역학적 특성을 1차적으로 평가할 수 있는 간접적인 실험방법의 개발이 요구된다. 본 연구에서는 여러나라에서 각기 제안되고 있는 실험규격에 대한 비교실험을 통하여 구조보강용 접착제의 역학적 특성을 개략적으로 예측할 수 있는 표준화된 실험방법 및 평가기준을 제안하고자 하였다. 본 연구결과를 바탕으로 인장전단접착강도 시험의 접착제 두께, 압축/휨강도 시험체의 제원 등이 통일되어 표준시험체 제원을 도출할 수 있었다.