• Title/Summary/Keyword: Shear spinning

Search Result 44, Processing Time 0.019 seconds

Vibration and Stability Analysis of a Multi-stepped Shaft System of Turbo Compressor (터보 압축기 다단 회전축계의 진동 및 안정성 연구)

  • Seo, Jung-Seok;Kang, Sung-Hwan;Park, Sang-Yoon;An, Chang-Gi;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.583-591
    • /
    • 2014
  • The mathematical modeling on the free vibration and stability of a multi-stepped shaft of turbo compressor is performed in this study. The multi-stepped shaft is modeled as a non-uniform Timoshenko beam supported by anisotropic bearings. It is assumed that the shaft is spinning with constant speed about its longitudinal axis and subjected to a conservative axial force induced by front and rear impellers attached to the shaft. The structural model incorporates non-classical features such as transverse shear and rotary inertia. A structural coupling between vertical and lateral motions is induced by Coriolis acceleration terms. The governing equations are derived via Hamilton's variational principle and the equations are transformed to the standard form of an eigenvalue problem. The implications of combined gyroscopic effect, conservative axial force, bearing stiffness and damping are revealed and a number of pertinent conclusions are outlined. In this study analytical results are compared with those from ANSYS finite element analysis and experimental modal testing.

Fabrication of Lignin Nanofibers Using Electrospinning (전기방사를 이용한 리그닌 나노섬유의 제조)

  • Lee, Eunsil;Lee, Seungsin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.372-385
    • /
    • 2014
  • Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.

The Mechanical Properties of Thin Suede Fabric with Stretch Function (신축기능성 박지 Suede 직물의 역학적 성질 변화)

  • Park, Myung Soo
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.288-295
    • /
    • 2012
  • Although some degree of mechanical properties of suede fabrics mainly related to non-woven suede fabric has some researched, the thin suede fabric has rarely been researched. In this study, polyester(DTY 50/72) was used for warp, and after producing latent yarn and sea-island yarn for weft, two yarns were compounded to produce sea-island DTY yarn. By using the two produced yarns for warp and weft, we produced thin suede fabric with stretch function. For weft 2ply, weft density 85, 90, 100(picks/in) were applied to weave fabric, and for weft 1ply, weft density 125, 135, 140(picks/in) were applied to produce weft face 5-end satin weave. The mechanical properties of the produced fabric were researched. The result are as followed. The weight loss ratio of the suede fabric produced for this experiment reached 15% on the conditions of temperature $90^{\circ}C$ and 20 minutes, so that island parts were completely separated. The strength of weft 1ply applied suede fabric was about 7.5kg and that of 2ply suede fabric and about 3.5kg. But the strain of two samples ranged from about 40 to 43%. Although Hari was high when weft was denser. The values of Koshi and Kisimi were low. And shear stiffness was high when sea-island DTY yarn was used. The WC value was higher in the case of 2ply than in that of 1ply sea-island DTY yarn for weft, so that we may conclude that Fukurami was more affected in the 2ply case.

The Physical Property of the Structural Color Yarn and Fabric for Emotional Garment Using Biomimetic Technology (생체모방기술을 응용한 감성의류용 구조발색사와 직물의 물성)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • This study investigated the structural coloration and fabric hand of the caustic reduced fabrics for emotional garment using structural color yarns, which was spun by 37 alternating nylon and polyester layers capable of producing basic colors using biomimetic technology. The colorations of the three kinds of structural color yarns were confirmed using multi angle spectro-photometer, and their triangular cross sections composed with 37 alternating nylon and polyester layers were measured using SEM and were discussed with layer length in relation with coloration and spinning conditions were also set up. The apparent color difference and reflectance of the three kinds of fabrics with different density and weave pattern were analysed as ranging from 400nm to 700nm. The optimum fabric structural design which is made by warp and weft densities(194ends/in ${\times}$ 105picks/in) and caustic reduction condition by $100^{\circ}C$ temperature and 60minutes with NaOH, 20g/l solution were decided through analysis of the mechanical properties and fabric hands of these three kinds of fabrics treated with 3 kinds of the caustic reduction conditions. And it was shown that the rate of caustic reduction was increased from 13% to 23% with increasing temperature and time of caustic reduction. The extensibility, bending rigidity and shear modulus of caustic reduction treated fabrics were decreased by treatment of caustic reduction, on the other hand fabric compressibility was increased. And it was shown that the hand value of specimen number one which was treated with temperature $100^{\circ}C$ and time 60minute was the best and the hand of this fabric was better than that of Morpho $fabric^{(R)}$ made by Teijin co. Japan.

  • PDF