• Title/Summary/Keyword: Shear span to depth ratio

Search Result 224, Processing Time 0.025 seconds

Analysis of reinforced concrete corbel beams using Strut and Tie models

  • Parol, Jafarali;Al-Qazweeni, Jamal;Salam, Safaa Abdul
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2018
  • Reinforced concrete corbel beams (span to depth ratio of a corbel is less than one) are designed with primary reinforcement bars to account for bending moment and with the secondary reinforcement placed parallel to the primary reinforcement (shear stirrups) to resist shear force. It is interesting to note that most of the available analytical procedures employ empirical formulas for the analysis of reinforced concrete corbels. In the present work, a generalized and a simple strut and tie models were employed for the analysis of reinforced corbel beams. The models were benchmarked against experimental results available in the literature. It was shown here that increase of shear stirrups increases the load carrying capacity of reinforced concrete corbel beams. The effect of horizontal load on the load carrying capacity of the corbel beams has also been examined in the present paper. It is observed from the strut and tie models that the resistance of the corbel beam subjected to combined horizontal and vertical load did not change with increase in shear stirrups if the failure of the corbel is limited by concrete crushing. In other words, the load carrying capacity was independent of the horizontal load when failure of the beam occurred due to concrete crushing.

Failure Behavior Analysis of R.C Beams using LS-DYNA (LS-DYNA를 이용한 철근 콘크리트 보의 파괴 거동 해석)

  • Park, Gun;Hong, Ki-Nam;Hang, Sang-Hoon;Kwon, Yong-Gil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.297-300
    • /
    • 2008
  • This study focuses on the evaluation of efficiency of the explicit FEM program LS-DYNA to predict the failure behavior of reinforced concrete. Analysis variables of reinforced concrete beams were longitudinal bar ratio, shear steel ratio and span-depth ratio. Failure behavior of reinforced concrete beams was approximately simulated by LS-DYNA.

  • PDF

Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube (강관구속 고강도 철근콘크리트 기둥의 내진성능)

  • 한병찬
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

New strut-and-tie-models for shear strength prediction and design of RC deep beams

  • Chetchotisak, Panatchai;Teerawong, Jaruek;Yindeesuk, Sukit;Song, Junho
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.19-40
    • /
    • 2014
  • Reinforced concrete deep beams are structural beams with low shear span-to-depth ratio, and hence in which the strain distribution is significantly nonlinear and the conventional beam theory is not applicable. A strut-and-tie model is considered one of the most rational and simplest methods available for shear strength prediction and design of deep beams. The strut-and-tie model approach describes the shear failure of a deep beam using diagonal strut and truss mechanism: The diagonal strut mechanism represents compression stress fields that develop in the concrete web between diagonal cracks of the concrete while the truss mechanism accounts for the contributions of the horizontal and vertical web reinforcements. Based on a database of 406 experimental observations, this paper proposes a new strut-and-tie-model for accurate prediction of shear strength of reinforced concrete deep beams, and further improves the model by correcting the bias and quantifying the scatter using a Bayesian parameter estimation method. Seven existing deterministic models from design codes and the literature are compared with the proposed method. Finally, a limit-state design formula and the corresponding reduction factor are developed for the proposed strut-andtie model.

Free Vibration Characteristics of Columns Immersed in Fluid with a Concentrated Mass at the Top (상단에 집중질량을 갖는 유체에 잠긴 기둥의 자유진동 특성)

  • 오상진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.105-112
    • /
    • 2000
  • This paper deals with the free vibrations of columns immersed in fluid. The column model is based on the classical Bernoulli-euler theory which neblects the effects of rotatory inerital and shear deformation. The eccentricity and rotatory inertial of the concentrated mass at the top are taken into accuont. In the governing equation for the free vibration of column, thedensity of immersed part was midified to account for theadded fluid mass. The govering differential equations are solved numerically using the corresponding boundary conditions. The lowest four natural frequencies and corresponding mode shapes are calculated over a range of non-dimensional system parameters ; the mas density ration of fluid to column, the ratio of fluid depth to span length, the ratio of tip mass to total column mass, the dimensionless mass moment of inertia, and the eccentricity.

  • PDF

An Experimental Study on the Shear Performance of High-strength Concrete Beams Made with Recycled Aggregate (재생골재를 사용한 고강도 철근콘크리트 보의 전단성능에 관한 실험적 연구)

  • 박우철;이경희;박완신;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.879-884
    • /
    • 2001
  • The use of recycled-aggregate concrete is increasing faster than the development of appropriate design recommendations. In addition, recycled-aggregate and higher compressive strengths are two of the most desired characteristics to improve the use of concrete as a construction material. The paper reports limited experimental data on the shear capacity of high-strength recycled aggregate concrete beams. Ten beams were tested to determine their diagonal cracking and ultimate shear capacities. The variable in the test program were concrete strength(300, 500 and 700kgf/$cm^{2}$), and shear span/depth ratio (a/d : 2.0, 3.0 and 4.0). Test results indicate that the ACI Building code prediction of Eq.(11-3) and (11-5) for high-strength recycled aggregate concretes are unconservative for all beams (with concrete strength 300, 500 and 700kgf/$cm^{2}$, a/d ratios 2.0, 3.0 and 4.0). But Zsutty Equation for high-strength recycled aggregate concretes is conservative for all beams. The results of the experimental investigation on the cracking patterns for beams show that the angle that the critical inclined crack makes with the horizontal axis decreases with increasing a/d.

  • PDF

Experimental study on flexural strength of modular composite profile beams

  • Ahn, Hyung-Joon;Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.71-85
    • /
    • 2007
  • This study suggests modular composite profile beams, where the prefab concept is applied to existing composite profile beams. The prefab concept produces a beam of desired size having two types of profile: side module and bottom module. Module section will improve construction efforts because it offers several benefits : reduction of deflections due to creep and shrinkage, which might be found in existing composite profile beams; increase in span/depth ratio; and free prefabrication of any required beams. Based on the established analysis theory of composite profile beams, an analysis theory of modular composite profile beams was suggested, and analysis values were compared with experimental ones. The behavior of individual modules with increase of load was measured with a strain gauge, and the shear connection ratio between modules was analyzed by using the measured values. As a result of experiment, it was found that theoretical flexural strength on condition of full connection was 57%-80% by connection of modules for each specimen, and it is expected that flexural strength will approximate the theoretical levels through further module improvement.

Free Vibrations of Columns Immersed in Fluid (유체에 담긴 기둥의 자유진동)

  • 오상진;이병구;모정만
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.225-230
    • /
    • 1999
  • The purpose of this paper is to investigate the natural frequencies and mode shape of columns immersed in fluid. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertial and shear deformation. The eccentricity and rotatory inerital of the tip mass are taken into account . The governing differential equations forr the free vibrations of immersed columns are solved numerically using the corresponding boundary conditoins. The lowest four natural frequencies and corresponding mode shapes are calculated over a range of non-dimensional system parameters : the ratio of fluid depth to span length, the mass ratio, the dimensionless mass moment of inertial, and the eccentricity.

  • PDF

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

Shear behavior and shear capacity prediction of precast concrete-encased steel beams

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Liu, Yaping
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.261-272
    • /
    • 2020
  • A novel precast concrete-encased steel composite beam, which can be abbreviated as PCES beam, is introduced in this paper. In order to investigate the shear behavior of this PCES beam, a test of eight full-scale PCES beam specimens was carried out, in which the specimens were subjected to positive bending moment or negative bending moment, respectively. The factors which affected the shear behavior, such as the shear span-to-depth aspect ratio and the existence of concrete flange, were taken into account. During the test, the load-deflection curves of the test specimens were recorded, while the crack propagation patterns together with the failure patterns were observed as well. From the test results, it could be concluded that the tested PCES beams could all exhibit ductile shear behavior, and the innovative shear connectors between the precast concrete and cast-in-place concrete, namely the precast concrete transverse diaphragms, were verified to be effective. Then, based on the shear deformation compatibility, a theoretical model for predicting the shear capacity of the proposed PCES beams was put forward and verified to be valid with the good agreement of the shear capacities calculated using the proposed method and those from the experiments. Finally, in order to facilitate the preliminary design in practical applications, a simplified calculation method for predicting the shear capacity of the proposed PCES beams was also put forward and validated using available test results.