• 제목/요약/키워드: Shear rate distribution

검색결과 112건 처리시간 0.027초

이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석 (3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model)

  • 서상호;유상신;노형운
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권2호
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF

콘관입으로 인한 과압밀점토의 과잉간극수압의 분포 (Excess Pore Pressure Induced by Cone Penetration in OC Clay)

  • 김태준;김상인;이우진
    • 한국지반공학회논문집
    • /
    • 제22권11호
    • /
    • pp.75-87
    • /
    • 2006
  • 본 논문에서는 과압밀된 점토에서 피에조콘 관입으로 인한 과잉간극수압의 공간적인 분포를 알아내기 위한 대형 토조시험을 실시하고 분석결과를 제시하였다. 시험결과에 의하면 콘 주변의 전단영역에서 과잉간극수압은 콘 표면으로부터 전단영역의 경계까지 직선적으로 증가하며, 소성영역에서는 대수적으로 감소하여 소성영역 경계에서 영으로 접근하였다. 또한 전단영역의 크기는 콘 반경의 2.2-1.5배 정도이며 과압밀비 증가 시 전단영역의 크기는 감소하는 반면 소성영역의 크기는 과압밀비에 상관없이 콘 반경의 약 11배로 일정하였다. 본 연구에서는 변형률 속도와 응력이 방성 효과를 고려하여 MCC(Modified Cam Clay) 모델과 공동확장이론으로부터 피에조콘 위치에서의 과잉간극수압을 예측하였으며, 전단영역에서 ${\Delta}u_{shear}$의 선형증가와 전단 및 소성영역에서 ${\Delta}u_{oct}$의 대수적 감소를 가정하여 과잉간극수압의 공간적 분포를 예측하기 위한 방법을 제시하였다. 이러한 방법으로 예측된 간극수압의 분포는 대형 토조시험에서의 콘 관입시험 결과와 비교를 통해 검증되었다.

볼트 체결형 강판-콘크리트 합성보의 형상 제안 (The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts)

  • 조태구;최병정
    • 한국산학기술학회논문지
    • /
    • 제19권7호
    • /
    • pp.305-314
    • /
    • 2018
  • 강판 콘크리트 합성보는 강판, 콘크리트 및 2가지의 이질 재료를 결합시키는 전단 연결재로 구성되어 있다. 일반적으로 강판은 기존의 합성보에 용접하여 조립된다. 본 연구에서는 전단 연결재를 감소시키고, 작업성을 향상시키기 위해 SPC(Steel Plate Concrete Composite Beam) 보라 불리는 새로운 강판 콘크리트 합성보를 개발했다. SPC 보는 전단 연결재 없이 절곡된 강판과 콘크리트로 구성된다. 절곡된 강판은 용접 대신 고강도 볼트로 조립된다. 또한, 건설 현장에서 작업성을 향상시키기 위해 슬래브와 접합부에 모자 모양의 Cap이 부착된다. 변위 제어 모드에서 2점 가력 실험을 수행하였고, 시편의 휨강도를 계산하기 위해 소성 응력 분포법과 변형률 적합법을 사용하였다. 시험 결과에 따르면 새로운 SPC 보의 휨 강도는 완전 합성보 강도의 76 %의 값이 나왔다. Cap은 스터드와 부속 철물의 역할을 수행한다. 또한, Cap의 간격 제어를 통해 합성율의 증가가 가능하고, SPC 합성보의 합성율을 고려할 경우 변형률 적합법을 통해 SPC 합성보의 휨 성능 평가가 가능하다.

Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channel

  • Hong, Joung-Sook;Cooper-White, Justin
    • Korea-Australia Rheology Journal
    • /
    • 제21권4호
    • /
    • pp.269-280
    • /
    • 2009
  • The drop formation dynamics of a shear thinning, elastic, yield stress ($\tau_o$) fluid (Carbopol 980 (poly(acrylic acid)) dispersions) in silicone oil has been investigated in a flow-focusing microfluidic channel. The rheological character of each solution investigated varied from Netwonian-like through to highly non-Newtonian and was varied by changing the degree of neutralization along the poly (acrylic acid) backbone. We have observed that the drop size of these non-Newtonian fluids (regardless of the degree of neutralisation) showed bimodal behaviour. At first we observed increases in drop size with increasing viscosity ratio (viscosity ratio=viscosity of dispersed phase (DP)/viscosity of continuous phase (CP)) at low flowrates of the continuous phases, and thereafter, decreasing drop sizes as the flow rate of the CP increases past a critical value. Only at the onset of pinching and during the high extensional deformation during pinch-off of a drop are any differences in the non-Newtonian characteristics of these fluids, that is extents of shear thinning, elasticity and yield stress ($\tau_o$), apparent. Changes in these break-off dynamics resulted in the observed differences in the number and size distribution of secondary drops during pinch-off for both fluid classes, Newtonian-like and non-Newtonian fluids. In the case of the Newtonian-like drops, a secondary drop was generated by the onset of necking and breakup at both ends of the filament, akin to end-pinching behavior. This pinch-off behavior was observed to be unaffected by changes in viscosity ratio, over the range explored. Meanwhile, in the case of the non-Newtonian solutions, discrete differences in behaviour were observed, believed to be attributable to each of the non-Newtonian properties of shear thinning, elasticity and yield stress. The presence of a yield stress ($\tau_o$), when coupled with slow flow rates or low viscosities of the CP, reduced the drop size compared to the Newtonian-like Carbopol dispersions of much lower viscosity. The presence of shear thinning resulted in a rapid necking event post onset, a decrease in primary droplet size and, in some cases, an increase in the rate of drop production. The presence of elasticity during the extensional flow imposed by the necking event allowed for the extended maintenance of the filament, as observed previously for dilute solutions of linear polymers during drop break-up.

수직원관형 GAX 흡수기 내부의 열 및 물질전달과정에 대한 수치모델 (A Numerical Model for Heat and Mass Transfer Processes within a Vertical Tube GAX Absorber)

  • 천태식;정은수
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.102-111
    • /
    • 2000
  • A numerical model which simulates the simultaneous heat and mass transfer within a vertical tube GAX absorber was developed. The ammonia vapor and the solution liquid are in counter-current flow, and the hydronic fluid flows counter to the solution liquid. The film thickness and the velocity distribution of the liquid film were obtained by matching the shear stress at the liquid-vapor interface. Two-dimensional diffusion and energy equations were solved in the liquid film to give the temperature and concentration, and a modified Colburn-Drew analysis was used for the vapor phase to determine the heat and mass fluxes at the liquid-vapor interface. The model was applied to a GAX absorber to investigate the absorption rates, temperature and concentration profiles, and mass flow rates of liquid and vapor phases. It was shown that the mass flux of water was negligible compared with that of ammonia except the region near the liquid inlet. Ammonia absorption rate increases rapidly near the liquid inlet and decrease slowly. Both the absorption rate of ammonia vapor and the desorption rate of water near the liquid inlet increase as the vapor mass flow rate increases, but the mass fluxes of the ammonia and the water near the liquid outlet decrease as the mass flow rate of the vapor increases.

  • PDF

스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구 (The Spinnability of Multi-step Cylindrical Cup in Spinning Process)

  • 박중언;한창수;최석우;김승수;나경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Effects of Impeller Geometry on the 11α-Hydroxylation of Canrenone in Rushton Turbine-Stirred Tanks

  • Rong, Shaofeng;Tang, Xiaoqing;Guan, Shimin;Zhang, Botao;Li, Qianqian;Cai, Baoguo;Huang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.890-901
    • /
    • 2021
  • The 11α-hydroxylation of canrenone can be catalyzed by Aspergillus ochraceus in bioreactors, where the geometry of the impeller greatly influences the biotransformation. In this study, the effects of the blade number and impeller diameter of a Rushton turbine on the 11α-hydroxylation of canrenone were considered. The results of fermentation experiments using a 50 mm four-blade impeller showed that 3.40% and 11.43% increases in the conversion ratio were achieved by increasing the blade number and impeller diameter, respectively. However, with an impeller diameter of 60 mm, the conversion ratio with a six-blade impeller was 14.42% lower than that with a four-blade impeller. Data from cold model experiments with a large-diameter six-blade impeller indicated that the serious leakage of inclusions and a 22.08% enzyme activity retention led to a low conversion ratio. Numerical simulations suggested that there was good gas distribution and high fluid flow velocity when the fluid was stirred by large-diameter impellers, resulting in a high dissolved oxygen content and good bulk circulation, which positively affected hyphal growth and metabolism. However, a large-diameter six-blade impeller created overly high shear compared to a large-diameter four-blade impeller, thereby decreasing the conversion ratio. The average shear rates of the former and latter cases were 43.25 s-1 and 35.31 s-1, respectively. We therefore concluded that appropriate shear should be applied in the 11α-hydroxylation of canrenone. Overall, this study provides basic data for the scaled-up production of 11α-hydroxycanrenone.

다수 캐비티 사출금형에서 성형 인자가 충전 불균형에 미치는 영향 (Effects of processing Factors on Filling Imbalances in Multi-cavity Injection Mold.)

  • 강철민;정영득
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.54-57
    • /
    • 2004
  • Almost all injection molds have multi-cavity runner for mass production, which are designed with geometrically balanced runner system in order to minimize filling imbalance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalances have sometimes been observed. These filling imbalances have historically been considered as result of uneven mold temperature and mold deflection, but it actually results from non-symmetrically shear, pressure, temperature distribution within melt material as it flows through the runner system. Filling imbalance could be decreased by modifying processing conditions that are related to shear, pressure, temperature such as injection rate, mold temperature, injection pressure, melt temperature. In this study, a series of experiment was conducted using Taguchi method to determine which processing condition influence as the primary cause of filling imbalance in geometrically balanced runner system. As a result of experiments, this paper could present an optimal processing condition to minimize variable that brings about filling imbalance geometrically balanced runner system

  • PDF

ECAP 공정을 이용한 분말의 치밀화 (Powder Densification Using Equal Channel Angular Pressing)

  • 윤승채;서민홍;홍순익;김형섭
    • 한국분말재료학회지
    • /
    • 제13권2호
    • /
    • pp.124-128
    • /
    • 2006
  • In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.

정상유동에서 유동형 단엽폴리머 인공판막의 수력학적 성능평가 (Hydrodynamic Investigation of a Floating-type Monoleaflet Polymer Valve under Steady Flow Condition)

  • 김준우;박복춘
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권1호
    • /
    • pp.49-60
    • /
    • 1996
  • An experimental investigation was performed under steady flow condition to assess hydrodynamic performance of floating-type monoleaflet polymer valves (MLPV) withdifferent leaflet thickness. The St. Jude Medical valve (SJMV) was also used for comparison test. Pressure drops of MLPVS are larger than those for other types of polymer valves and mechanical valves. Furthermore, the thicker is the leaflet thickness of the polymer valve, the larger are the corresponding pressure drop. The velocity profiles for MLPs reveal a large reversed flow region downward to the valve position. The maximum wall shear stresses of MLPVS at a flow rate of $30{\ell}$/min are in the range 50-130 dyn/$cm^2$, and the corresponding maximum Reynolds shear stresses are in the range of 100-500 dyn/$cm^2$, respectively, which are beyond the allowable limit clinically. In contrast, floating-type monoleaflet polymer valves show better hydrodynamic performance in leakage volume. From the designing point of view, it may be concluded that the optimum thickness of leaflet for better hydrodynamic performance is one of the Important parameters.

  • PDF