• Title/Summary/Keyword: Shear key

Search Result 572, Processing Time 0.028 seconds

Flexural performance of double skin composite beams at the Arctic low temperature

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.431-446
    • /
    • 2020
  • This paper presents the flexural performance of double skin composite beams (DSCBs) at different Arctic low temperatures. 12 DSCBs were prepared and tested under two-point loading at different Arctic low temperatures of 20, -30, -50, and -70℃. The studied parameters include low-temperature level (T), steel-faceplate thickness (t), shear span ratio (λ), and spacing of headed studs (S). The experimental investigations under two-point loading tests showed that flexural failure occurred to all DSCBs, even including the specimen designed with the small λ ratio of 2.9. The ultimate strength behaviours of DSCBs were improved due to the improved mechanical properties of constructional materials and the confinement on shear connectors. The DSCB subjected to two-point loading and low temperatures exhibits a five-stage working mechanism. The stiffness and strength indexes of DSCBs increase linearly with temperature and t value increasing, while decreasing as shear span ratio boosts. In the contrast, the change of S value from 150 to 200 mm has little effect on the ultimate strength behavior of DSCB.

Design and behaviour of double skin composite beams with novel enhanced C-channels

  • Yan, Jia-Bao;Guan, Huining;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.517-532
    • /
    • 2020
  • This paper firstly developed a new type of Double Skin Composite (DSC) beams using novel enhanced C-channels (ECs). The shear behaviour of novel ECs was firstly studied through two push-out tests. Eleven full-scale DSC beams with ECs (DSCB-ECs) were tested under four-point loading to study their ultimate strength behaviours, and the studied parameters were thickness of steel faceplate, spacing of ECs, shear span, and strength of concrete core. Test results showed that all the DSCB-ECs failed in flexure-governed mode, which confirmed the effective bonding of ECs. The working mechanisms of DSCB-ECs with different parameters were reported, analysed and discussed. The load-deflection (or strain) behaviour of DSCB-ECs were also detailed reported. The effects of studied parameters on ultimate strength behaviour of DSCB-ECs have been discussed and analysed. Including the experimental studies, this paper also developed theoretical models to predict the initial stiffness, elastic stiffness, cracking, yielding, and ultimate loads of DSCB-ECs. Validations of predictions against 11 test results proved the reasonable estimations of the developed theoretical models on those stiffness and strength indexes. Finally, conclusions were given based on these tests and analysis.

A study on improvement of wind-resistance characteristics of the structure supporting road sign (도로표지판 지지구조물의 내풍성능 향상에 관한 연구)

  • Son, Yong-Chun;Park, Su-Yeong;Im, Jong-Guk;Sin, Min-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.485-488
    • /
    • 2008
  • The structure supporting road sign is a road information facility for ensuring the safe transportation and smooth traffic. But, lots of road information facilities were damaged by the typhoon "Maemi" in 2003. Such damaged facilities should be rehabilitated and could increase economic loss by causing traffic accident. Therefore, in this study, behavior that reduce wind load and improve wind resistance of the structure supporting road sign are studied about wind load beyond design specification by abnormal climate as below. The first is wind load reducing technique such that shear key resist wind load that is not greater than design wind speed but in case that it is over the design wind limit, column member is rotated on the inner steel pipe axis by the brittle failure of shear key. The second is the technique such that fail-safe the overturning of road sign panel by equipment installation in the vertical member. The third is the technique of installing stiffening plate inside the vertical member to relieve stress concentration.

  • PDF

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

Design Method of Steel Slit Shear Walls with Tapered Links for Structural Condition Assessment

  • He, Liusheng;Wu, Chen;Jiang, Huanjun
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.361-368
    • /
    • 2020
  • The authors developed a new type of steel slit shear wall (SSSW) having the function of structural condition assessment through visually inspecting the out-of-plane deformation of the designed tapered links subjected to lateral deformation. To facilitate its practical application, this paper studies how to design dimensions of the tapered links. Two parameters, the width-to-thickness ratio of the tapered links and steel yield stress, were studied. The performance of structural condition assessment was affected by both parameters with the width-to-thickness ratio being the controlling one. Through both numerical and experimental study, the designed width-to-thickness ratio of tapered links for different levels of structural condition assessment was established considering the effect of different steel grades used. In practice, the dimensions of tapered links can be determined following the design equation provided. Finally, a design procedure for the proposed SSSW system is provided.

Behaviour of a plane joint under horizontal cyclic shear loading

  • Dang, Wengang;Fruhwirt, Thomas;Konietzky, Heinz
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.809-823
    • /
    • 2017
  • This paper describes lab test results of artificial rock-like material samples having a plane joint. Cyclic shear tests were performed under different normal loads and different shear displacement amplitudes. For this purpose, multi-stage normal loading tests (30 kN, 60 kN, 90 kN, 180 kN, 360 kN and 480 kN) with cyclic excitation at frequency of 1.0 Hz and different shear displacement amplitudes (0.5 mm, 1.0 mm, 2.0 mm, 4.0 mm, 5.0 mm, and 8.0 mm) were conducted using the big shear box device GS-1000. Experimental results show, that shear forces increase with the increase of normal forces and quasi-static friction coefficient is larger than dynamic one. With the increase of normal loads, approaching the peak value of shear forces needs larger shear displacements. During each cycle the normal displacements increase and decrease (rotational behavior in every cycle). Peak angle of inclination increases with the increase of normal load. A phase shift between maximum shear displacement and maximum shear force is observed. The corresponding time shift decreases with increasing normal load and increases with increasing shear displacement amplitudes.

Shear Resistance Capacity of Precast Post-tensioned Concrete Beam-Column Connection (프리캐스트 포스트텐션 콘크리트 보-기둥 접합부의 전단성능)

  • 조경호;이종규;최광호;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.769-774
    • /
    • 2000
  • The first thing in developing precast post-tensioned concrete frame system verify the shear resistance capacity of the beam-column connection at which the transfer of member forces become discontinuous. Complying with the necessity of such experimental research, shear tests have been performed for six test specimens which were cast and cured at Dong-Ah Concrete Manufacturing Company and post-tensioning at Concrete Laboratory of Inha University. Shear key and magnitude of post-tensioned force are taken test variables. From the test results, it has been observed that the shear resistance of the specimens attained to higher values than those of theoritical calculations based on the shear friction with shear friction coefficient being 0.6.

  • PDF

Shear strength of steel beams with trapezoidal corrugated webs using regression analysis

  • Barakat, Samer;Mansouri, Ahmad Al;Altoubat, Salah
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.757-773
    • /
    • 2015
  • This work attempts to implement multiple regression analysis (MRA) for modeling and predicting the shear buckling strength of a steel beam with corrugated web. It was recognized from theoretical and experimental results that the shear buckling strength of a steel beam with corrugated web is complicated and affected by several parameters. A model that predicts the shear strength of a steel beam with corrugated web with reasonable accuracy was sought. To that end, a total of 93 experimental data points were collected from different sources. Then mathematical models for the key response parameter (shear buckling strength of a steel beam with corrugated web) were established via MRA in terms of different input geometric, loading and materials parameters. Results indicate that, with a minimal processing of data, MRA could accurately predict the shear buckling strength of a steel beam with corrugated web within a 95% confidence interval, having an $R^2$ value of 0.93 and passing the F- and t-tests.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.