• Title/Summary/Keyword: Shear heating

Search Result 143, Processing Time 0.04 seconds

Studies on Physico-chemical Properties of Chicken Meat Cooked in Electric Oven Combined with Superheated Steam (전기오븐에서 과열증기주입에 따른 열처리가 닭고기의 이화학적 특성변화에 미치는 영향)

  • Chun, Ji-Yeon;Kwon, Bong-Gu;Lee, Su-Hyun;Min, Sang-Gi;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.103-108
    • /
    • 2013
  • This study was carried out to observe the effect of superheated steam combined with oven heating on the physico-chemical and sensory properties of chicken meat. Specially, chicken breasts and thighs were heated for 40 min in various heating formulations such as oven heating, superheated steam heating or a combination of two kinds of heating. In the physical properties measurement, the shear force was increased as superheated steam heating time and chicken thighs were higher than chicken breasts in all treatments (p<0.05). The highest level of water holding capacity was solely superheated steam treated chicken for 40 min (p<0.05). The $L^*$ value was decreased but $a^*$ value or $b^*$ value were increased after cooking. Chicken breast exhibited a higher colour value than chicken thigh. Superheated heating was effective to reduce heating loss as 22.64% (p<0.05). However, pH was not different depending on the heating formulation or part of the chicken meat (p>0.05). In the sensory test, the combination of 10 min oven heating and 30 min superheated steam heating was effective to create a good flavour of chicken meat. In this study, an optimum formulation was developed which was a combination of 10 min oven heating and 30 min superheated steam heating. It was more effective to improve the quality of chicken meat than the single heat treatment of chicken meat.

Effect of Moisture Content on Viscosity of Starch Dough (전분반죽의 점도에 미치는 수분함량의 영향)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.582-592
    • /
    • 1995
  • To measure rheological properties of the starch dough, an Extrusion Capillary Viscometer(ECV) cell was self-made and attached to Instron machine(Model 1140). Apparent viscosities of corn and waxy corn starch doughs were measured and their gelatinization degrees were determined by enzymatic analysis. When corn and waxy corn starch doughs with $36{\sim}52%$ moisture content were heated at $60{\sim}100^{\circ}C$, come-up time of the cold point of doughs decreased from 220 sec to 140 sec with increased in the moisture content. In the measurement range of $36{\sim}52%$ moisture content and $60{\sim}100^{\circ}C$ heating temperature, both corn and waxy corn starch doughs showed pseudoplastic flow behaviors. At the same shear rate, both shear stress and viscosity of starch dough decreased as the moisture content increased. At the moisture content above 44%, the shear stress and viscosity of starch dough decreased as the heating temperature increased from $60^{\circ}C\;to\;70^{\circ}C$, but increased as the heating temperature increased from $80^{\circ}C\;to\;100^{\circ}C$. When the moisture content increased and heating temperature, the gelatinization degree of starch dough increased from about 10% to about 62%. The gelatinization degree of waxy corn starch dough was $15{\sim}20%$ higher than that of corn starch dough under the same gelatinization conditions. The effects of moisture content on the viscosity of starch dough were examined by Arrhenius equation. As the moisture content increased, viscosity of starch dough decreased. But the effect of moisture content was greater in the range of $80{\sim}100^{\circ}C$ than in the range of $60{\sim}70^{\circ}C$ heating temperature.

  • PDF

Development of 3D printer heating block using clad plate material (클래드 판재를 사용한 3D 프린터 히팅 블록 개발)

  • Won, Dae-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.199-205
    • /
    • 2017
  • In this study, the design analysis and the explosion welding were made into a clad sheet by the convergence method in order to solve the problem of heat transfer to the guide due to the heating of the 3D printer heating block. The shear strength of the clad plate material was tested and the results were analyzed by thermal analysis, thermal conductivity and thermal imaging. The following conclusions were obtained. 3D modeling of the heating block made of copper and titanium clad plate material The thermal analysis showed that the surface temperature of the filament guide area was lower than the heating block surface temperature. The average shear strength of copper and titanium clad plate material was measured and the average value of 195.6MPa was obtained. The thermal conductivity of the heating block made of copper and titanium clad plate material was measured three times and the average value was $62.52W/m{\cdot}K$. The surface temperature of the heating block made of copper and titanium clad plate material was measured by a thermal imaging camera at a maximum of $107.3^{\circ}C$ and $183.2^{\circ}C$ at the filament guide. The temperature distribution was $89^{\circ}C$ lower than that of the existing filament.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

Heating Behavior and Adhesion Property of Epoxy Adhesive with Nano and Micro Sized Fe3O4 Particles (Nano 및 Micro 크기의 Fe3O4 분말이 첨가된 열경화성 에폭시 접착제의 유도가열 및 접착 특성)

  • Hwang, Ji-Won;Im, Tae-Gyu;Choi, Seung-Yong;Lee, Nam-Kyu;Shon, Min-Young
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.55-60
    • /
    • 2020
  • A study on the heating behavior and adhesion property of structural epoxy adhesive through induction heating have been conducted. An adhesive for induction heating was manufactured through mixing with nano and micro sized Fe3O4. From the results, it was observed that induction heating is less affected by adherend (GFRP) thickness than oven heating. The heating rate of Fe3O4 embedded epoxy adhesive using induction heating much higher than that of oven curing process and it is more appreciable when the contents of Fe3O4 increased. Furthermore, adhesion strength increased with increase of Fe3O4 particle contents.

Joint Characteristics of Lubricant-Impregnated Nylon and Metals (윤활제 함침 나일론과 금속의 접합특성)

  • Chang, Yoon-Sang;Kang, Suk-Choon;Ho, Kwang-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.84-89
    • /
    • 2003
  • The joint method and characteristics of lubricant Impregnated MC nylon and metal are analyzed. Considering the productivity and economics, two materials are Joined with the process of turning, knurling, and induction heating. The Joint strength is determined by adhesion of the melted nylon, the size of knurl, and the interference from the difference of the diameters. The parameters affecting induction heating process are analyzed. The adhesion strength of the melted nylon is measured. Finally the joint strength is analyzed in the environments of low, room, and high temperature. The nylon/metal Joined material is expected to be widely used as the sliding machine elements with good friction and shear strength.

  • PDF

Effects of ${\beta}$-Conglycinin and Glycinin on Thermal Gelation and Gel Properties of Soy Protein

  • Kang, Il-Jun;Lee, Young-Sook
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • Dynamic shear moduli of isolated soy protein solutions upon heating were measured to monitor gelation. Onsets of gelation coincide with onset temperatures of denaturation in glycinin and ${\beta}$-conglycinin solutions, whereas in isolated soy proteins, onset of gelation was above denaturation temperature of ${\beta}$-conglycinin with storage modulus increasing in two steps. The first increase in storage modulus of isolated soy proteins occurred at about $78.5^{\circ}C$, while the second increase started at about $93^{\circ}C$. Gel properties of soy protein gels having different proportions of glycinin and ${\beta}$-conglycinin were measured by compression-decompression test. ${\beta}$-conglycinin was responsible for gel elasticity. Glycinin significantly increased hardness, toughness, and fracturability of gels at high heating temperature near $100^{\circ}C$. Results reveal texture of soy protein gels can be controlled by regulating ratio of glycinin to ${\beta}$-conglycinin and heating temperature.

Effect of Spot Welding Conditions on Spatter and Mechanical Strength Properties (스패터 및 기계적 강도특성에 미치는 점용접 조건의 영향)

  • 서도원;윤호철;전양배;임재규
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.70-75
    • /
    • 2003
  • Spot welding is a process that sheet metals are joined in one or more spot by heating at the faying interface. In this process, the spatter is dispersed from melted area. It has been reported that spatter generation has adverse effects on weld quality. However, no systematic study has been carried out to find out its effect on weld quality in resistance spot welding processes. In this study, specially designed specimen are used to perform experimental investigation of spatter generation and its effect. Major finding of this study show trends in tensile-shear strength for various amounts of spatter generated during spot welding process. Thus, optimum welding conditions are proposed in view of spatter generation and tensile-shear strength. (Received December 11, 2002)

Subgrain boundaries in octachloropropane: deformation patterns, subgrain boundary orientation and density

  • Ree, Jin-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.20-33
    • /
    • 1994
  • Some of the seven types of subgrain boundaries (Means and Ree, 1988) in octachloropropane samples show distinctive deformation patterns during their development. Type II subgrain boundaries migrate to accommodate the deformation difference between adjacent grains. The formation of Type III requires a rigid-body roation of grains to reduce misorientation of adjacent grains. Type I, IV, V and VI develop either in static or dynamic condition. Type VII form only in static environments after deformation. Ribbon grains can develop via Type III or Type IV process. The orientation pattern and density of subgrain boundaries are more or less stable through a post-deformation heating. Subgrain boundary orientations are symmetric with respect to the grain-shape foliation in pure shear. In simple shear, their maximum inclines toward the direction of shear.

  • PDF