• Title/Summary/Keyword: Shear failure model

Search Result 625, Processing Time 0.024 seconds

Shear strength evaluation of RC solid piers of high-speed railway bridges in China

  • Guo, Wei;Fan, Chao;Cui, Yao;Zeng, Chen;Jiang, Lizhong;Yu, Zhiwu
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.413-423
    • /
    • 2021
  • Piers are the main lateral force-resisting members of high-speed railway (HSR) bridges used in China and are characterized by low axial load ratios, low longitudinal reinforcement ratios, low stirrup ratios, and high shear span ratios. It is well known that flexural, flexural-shear, and shear failures of piers may occur during an earthquake. In this study, a new shear strength model was developed to simulate the seismic failure of HSR solid piers accurately. First, low cyclic-loading test data of solid piers obtained in recent years were collected to set up a database for model verification. Second, based on the test database, the applicability of existing shear strength models was evaluated. Finally, a new shear strength model for HSR solid piers with round-ended cross-sections was derived based on the truss model and ultimate equilibrium theory. In comparison with existing models, it was demonstrated that the proposed model could be used to predict the shear strength of HSR piers more accurately.

Seismic assessment of thin steel plate shear walls with outrigger system

  • Fathy, Ebtsam
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.267-282
    • /
    • 2020
  • The seismic performance and failure modes of the dual system of moment resisting frames and thin steel plate shear walls (TSPSWs) without and with one or two outrigger trusses are studied in this paper. These structural systems were utilized to resist vertical and lateral loads of 40-storey buildings. Detailed Finite element models associated with nonlinear time history analyses were used to examine seismic capacity and plastic mechanism of the buildings. The analyses were performed under increased levels of earthquake intensities. The models with one and two outriggers showed good performance during the maximum considered earthquake (MCE), while the stress of TSPSWs in the model without outrigger reached its ultimate value under this earthquake. The best seismic capacity was in favour of the model with two outriggers, where it is found that increasing the number of outriggers not only gives more reduction in lateral displacement but also reduces stress concentration on thin steel plate shear walls at outrigger floors, which caused the early failure of TSPSWs in model with one outrigger.

Pushover Analysis Considering Effects of Degradation of Shear Strength (전단강도 감소효과를 고려한 Pushover 해석)

  • Lee, Young-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.514-517
    • /
    • 2006
  • Nonseismic designed RC frame have a possibility of shear failure because of deficiencies of reinforcing details. To model the shear failure in numerical analysis, shear strength degradation models which include Moehle's and ATC 40 are compared and applied to push-over analysis. For numerical analysis, three storied building frame is selected and designed according to Korean Concrete Design Code(2003). From the numerical analysis, it is pointed out that there may be great difference in lateral drift capacity if a different shear strength model is used. And the capacity can be severely underestimated if the restraining model of plastic rotation of ATC 40 is used, compared to the use of shear spring for shear degradation.

  • PDF

Computational methodology to determine the strength of reinforced concrete joint

  • Sasmal, Saptarshi;Vishnu Pradeesh, L.;Devi, A. Kanchana;Ramanjaneyulu, K.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.61-77
    • /
    • 2016
  • Seismic performance of structures depends on the force flow mechanism inside the structure. Discontinuity regions, like beam-column joints, are often affected during earthquake event due to the complex and discontinuous load paths. The evaluation of shear strength and identification of failure mode of the joint region are helpful to (i) define the strength hierarchy of the beam-column sub-assemblage, (ii) quantify the influence of different parameters on the behaviour of beam-column joint and, (iii) develop suitable and adequate strengthening scheme for the joints, if required, to obtain the desired strength hierarchy. In view of this, it is very important to estimate the joint shear strength and identify the failure modes of the joint region as it is the most critical part in any beam-column sub-assemblage. One of the most effective models is softened strut and tie model which was developed by incorporating force equilibrium, strain compatibility and constitutive laws of cracked reinforced concrete. In this study, softened strut and tie model, which incorporates force equilibrium equations, compatibility conditions and material constitutive relation of the cracked concrete, are used to simulate the shear strength behaviour and to identify failure mechanisms of the beam-column joints. The observations of the present study will be helpful to arrive at the design strategy of the joints to ensure the desired failure mechanism and strength hierarchy to achieve sustainability of structural systems under seismic loading.

Strain-Based Shear Strength Model for Prestressed Beams (프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델)

  • Kang, Soon-Pil;Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • An analytical model for predicting the shear strength of prestressed concrete beams without shear reinforcement was developed, on the basis of the existing strain-based shear strength model. It was assumed that the compression zone of intact concrete in the cross-section primarily resisted the shear forces rather than the tension zone. The shear capacity of concrete was defined based on the material failure criteria of concrete. The shear capacity of the compression zone was evaluated along the inclined failure surface, considering the interaction with the compressive normal stress. Since the distribution of the normal stress varies with the flexural deformation of the beam, the shear capacity was defined as a function of the flexural deformation. The shear strength of a beam was determined at the intersection of the shear capacity curve and the shear demand curve. The result of the comparisons to existing test results showed that the proposed model accurately predicted the shear strength of the test specimens.

Capacities and Failure Modes of Transfer Girders in the Upper-Wall and Lower-Frame Structures having different Detailing (주상복합구조의 전이보 상세에 따른 성능과 파괴모드)

  • 이한선;김상연;고동우;권기혁;김민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.845-850
    • /
    • 2000
  • This paper presents the results of tests performed on the transfer girders which have been generally used between upper walls and lower frames in the hybrid structures. The 8 specimens were designed using (1) ACI method, (2) strut-tie model, and (3) X-type shear reinforcement cage. The capacities of the specimens are in general larger than the design values except the one designed according to strut-tie model. The reason for this difference seems to be due to the arbitrary allocation of transferred shear force to the path of direct compression strut and the path of indirect strut and tie. The failure modes turn out toe be (1) shear failure at critical shear zone, (2) compressive concrete crushing in the diagonal strut in the shear zone of transfer girder, and (3) compressive concrete crushing in the corner of upper wall.

Shear behavior of composite frame inner joints of SRRC column-steel beam subjected to cyclic loading

  • Ma, Hui;Li, Sanzhi;Li, Zhe;Liu, Yunhe;Dong, Jing;Zhang, Peng
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, cyclic loading tests on composite frame inner joints of steel-reinforced recycled concrete (SRRC) column-steel beam were conducted. The main objective of the test was to obtain the shear behavior and analyze the shear strength of the joints. The main design parameters in the test were recycled coarse aggregate (RCA) replacement percentage and axial compression ratio. The failure process, failure modes, hysteresis curves and strain characteristics of the joints were obtained, and the influences of design parameters on the shear strength of the joints have been also analysed in detail. Results show that the failure modes of the joints area are typical shear failure. The shear bearing capacity of the joints maximally decreased by 10.07% with the increase in the RCA replacement percentage, whereas the shear bearing capacity of the joints maximally increased by 16.6% with the increase in the axial compression ratio. A specific strain analysis suggests that the shear bearing capacity of the joints was mainly provided by the three shear elements of the recycled aggregate concrete (RAC) diagonal compression strut, steel webs and stirrups of the joint area. According to the shear mechanism and test results, the calculation formulas of the shear bearing capacity of the three main shear elements were deduced separately. Thus, the calculation model of the shear bearing capacity of the composite joints considering the adverse effects of the RCA replacement percentage was established through a superposition method. The calculated values of shear strength based on the calculation model were in good agreement with the test values. It indicates that the calculation method in this study can reasonably predict the shear bearing capacity of the composite frame inner joints of SRRC column-steel beam.

Experimental investigations and FE simulation of exterior BCJs retrofitted with CFRP fabric

  • Halahla, Abdulsamee M.;Rahman, Muhammad K.;Al-Gadhib, Ali H.;Al-Osta, Mohammed A.;Baluch, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.337-354
    • /
    • 2019
  • This paper presents the results of experimental and numerical studies conducted to investigate the behavior of exterior reinforced concrete beam column joints (BCJ) strengthened by using carbon fiber reinforced polymer (CFRP) sheets. Twelve reinforced concrete beam-column joints (BCJ) were tested in an experimental program by simulating the joints in seismically deficient old buildings. One group of BCJs was designed to fail in flexure at the BCJ interface, and the second group was designed to ensure joint shear failure. One specimen in each set was -retrofitted with CFRP sheet wrapped diagonally around the joint. The specimens were subjected to both monotonic and cyclic loading up to failure. 3D finite element simulation of the BCJs tested in the experimental program was carried out using the software ABAQUS, adopting the damage plasticity model (CDP) for concrete. The experimental results showed that retrofitting of the shear deficient, BCJs by CFRP sheets enhanced the strength and ductility and the failure mode changed from shear failure in the joints to the desired flexural failure in the beam segment. The FE simulation of BCJs showed a good agreement with the experimental results, which indicated that the CDP model could be used to model the problems of the monotonic and cyclic loading of beam-column reinforced concrete joints.

JAYA-GBRT model for predicting the shear strength of RC slender beams without stirrups

  • Tran, Viet-Linh;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.691-705
    • /
    • 2022
  • Shear failure in reinforced concrete (RC) structures is very hazardous. This failure is rarely predicted and may occur without any prior signs. Accurate shear strength prediction of the RC members is challenging, and traditional methods have difficulty solving it. This study develops a JAYA-GBRT model based on the JAYA algorithm and the gradient boosting regression tree (GBRT) to predict the shear strength of RC slender beams without stirrups. Firstly, 484 tests are carefully collected and divided into training and test sets. Then, the hyperparameters of the GBRT model are determined using the JAYA algorithm and 10-fold cross-validation. The performance of the JAYA-GBRT model is compared with five well-known empirical models. The comparative results show that the JAYA-GBRT model (R2 = 0.982, RMSE = 9.466 kN, MAE = 6.299 kN, µ = 1.018, and Cov = 0.116) outperforms the other models. Moreover, the predictions of the JAYA-GBRT model are globally and locally explained using the Shapley Additive exPlanation (SHAP) method. The effective depth is determined as the most crucial parameter influencing the shear strength through the SHAP method. Finally, a Graphic User Interface (GUI) tool and a web application (WA) are developed to apply the JAYA-GBRT model for rapidly predicting the shear strength of RC slender beams without stirrups.

Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.611-620
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results shows that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilize in failure process. Also the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear test tensile strength was increased by increasing the layer thickness.