• 제목/요약/키워드: Shear factor

검색결과 1,209건 처리시간 0.026초

Predicting shear strength of SFRC slender beams without stirrups using an ANN model

  • Keskin, Riza S.O.
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.605-615
    • /
    • 2017
  • Shear failure of reinforced concrete (RC) beams is a major concern for structural engineers. It has been shown through various studies that the shear strength and ductility of RC beams can be improved by adding steel fibers to the concrete. An accurate model predicting the shear strength of steel fiber reinforced concrete (SFRC) beams will help SFRC to become widely used. An artificial neural network (ANN) model consisting of an input layer, a hidden layer of six neurons and an output layer was developed to predict the shear strength of SFRC slender beams without stirrups, where the input parameters are concrete compressive strength, tensile reinforcement ratio, shear span-to-depth ratio, effective depth, volume fraction of fibers, aspect ratio of fibers and fiber bond factor, and the output is an estimate of shear strength. It is shown that the model is superior to fourteen equations proposed by various researchers in predicting the shear strength of SFRC beams considered in this study and it is verified through a parametric study that the model has a good generalization capability.

안전계수 변화를 고려한 사면거동의 3차원 분석기법 연구 (3-Dimensional Analysis of Slope Behavior with Varying Safety Factor)

  • 한희수;백용;조재호;황찬규
    • 한국지반환경공학회 논문집
    • /
    • 제11권4호
    • /
    • pp.19-24
    • /
    • 2010
  • 사면의 거동에 관한 종래의 해석 기법은 사면거동을 시간과 변위의 2차원 크리프로 해석하는 것이었으나, 이러한 해석 기법은 강우에 의한 응력변화를 고려 않고 시간에 따른 변위만을 고려하여, 강우 시 사면의 거동 및 붕괴를 설명하지 못한다. 또한 강우에 의한 이력현상으로 인해 파괴면내의 전단에너지가 감소한다. 크리프 해석은 응력항을, 이력현상 해석은 시간항을 무시한 해석이므로, 두 가지 해석을 결합하여, 사면의 거동을 해석한다면, 응력변화, 변위 및 시간을 모두 고려한 실제 사면의 거동해석이 됨을 알 수 있다. 그러나 응력변화에 관한 항은, 강우로 인한 실제 사면의 침투 및 배수 시, 전단응력의 변화 및 전단강도의 변화를 동시에 유발하므로, 이 두 항을 동시에 고려할 수 있는 안전계수항으로 바꾸어야 한다. 본 논문은 강우의 지반침투 및 배수로 인하여 사면의 단위중량이 변하는 과정에 대한 크리프와 이력현상을 고려할 수 있는 결합해석으로 고찰하고 이에 따른 사면붕괴에 관한 전단응력과 전단강도의 변화 및 안전계수변화를 3차원으로 나타내고자 수행한 결과이다.

무요소법에서 RKPM을 이용한 보 해석 방안 (Beam analysis methods using RKPM)

  • 송태한
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.35-42
    • /
    • 2002
  • In this paper, effective analysis of beam is studied using the RKPM in meshless methods. So, RKPM is extended for solving moderately thick and thin beam. General Timoshenko beam theory is used for formulation. Shear locking is the main difficulty in analysis of beam structures. The shear relaxation factor and corrected shear rigidity are introduced to overcome shear locking. Analysis results obtained reveal that RKPM using introduced methods Is free of locking and very effectively applicable to deeply as well as shallowly beams.

  • PDF

굳지않은 모르타르의 레올로지 성질에 미치는 간극수압의 영향 (Influence of Pore Wter Pessure on Rheological Properties of Fresh Mortar)

  • 이건철;이세현;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.793-796
    • /
    • 2006
  • In this study, the rheological properties of fresh concrete of fresh mortar and concrete were investigated experimentally by shear box test. The pore water pressure in fresh mortar was measured as an influence factor of shear deformation of fresh mortar. As the result, it was clarified that the rheological properties is affected by the pore water pressure in fresh mortar and, the correcting method of shear stress in case of shear box test was obtained.

  • PDF

5층 철근콘크리트 중간모멘트골조의 반응수정계수에 관한 연구 (A Study on the Response Modification Factor for a 5-Story Reinforced Concrete IMRF)

  • 강석봉;임병진
    • 한국지진공학회논문집
    • /
    • 제16권5호
    • /
    • pp.13-21
    • /
    • 2012
  • 본 논문에서는 푸쉬오버해석을 통해 철근콘크리트 중간모멘트골조의 반응수정계수를 확인하기 위하여 5층 구조물을 KBC2009에 맞게 구조설계 하였다. 보 및 기둥 부재의 휨모멘트-곡률 관계는 화이버 모델로 확인하였으며 보-기둥 접합부 모멘트-회전각 관계는 Simple and Unified Joint Shear Behavior Model과 보-기둥 접합부 모멘트 평형관계를 이용하여 확인하였다. 푸쉬오버해석 결과 보-기둥 접합부 비탄성 전단거동을 무시하는 경우 구조물의 강도가 과대평가 되었다. 반응수정계수는 내진설계범주 C에 대하여 설계한 경우 평균 7.78, 내진설계범주 D에 대하여 설계한 경우 평균 3.64로 평가되었다.

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

Confinement effect on the behavior factor of dual reinforced concrete moment-resisting systems with shear walls

  • Alireza Habibi;Mehdi Izadpanah;Yaser Rahmani
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.781-791
    • /
    • 2023
  • Lateral pressure plays a significant role in the stress-strain relationship of compressed concrete. Concrete's internal cracking resistance, ultimate strain, and axial strength are improved by confinement. This phenomenon influences the nonlinear behavior of reinforced concrete columns. Utilizing behavior factors to predict the nonlinear seismic responses of structures is prevalent in seismic codes, and this factor plays a vital role in the seismic responses of structures. This study aims to evaluate the confining action on the behavior factor of reinforced concrete moment resisting frames (RCMRFs) with shear walls (SWRCMRFs). To this end, a diverse range of mid-rise SW-RCMRFs was initially designed based on the Iranian national building code criteria. Second, the stress-strain curve of each element was modeled twice, both with and without the confinement phenomenon. Each frame was then subjected to pushover analysis. Finally, the analytical behavior factors of these frames were computed and compared to the Iranian seismic code behavior factor. The results demonstrate that confining action increased the behavior factors of SW-RCMRFs by 7-12%.

Stuttgart 콘크리트 보 전단실험의 재해석을 통한 합리적 전단모델 연구 (A Study on the Rational Shear Model by interpretation of Stuttgart Beam Shear Test)

  • 김우;모귀석;정제평
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.884-889
    • /
    • 2003
  • Based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subject to combined shear and moment loads, the shortcomings of present truss models are discussed. The core of the theory is that a new perspective on the shear strength can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be designed using the simple truss having curved compression chord, while the beam action between the two chords can be modeled using a parallel chord truss with MCFT or RA-STM. The compatibility of deformation associated to the two action is taken into account by employing a characteristic factor a. The new model was examined by the Stuttgart beam shear tests, and the results show that the present approach provides good estimates of stirrup contribution and concrete contributions.

  • PDF

자연 퇴적 점성토의 비배수 전단강도에 미치는 전단 속도의 영향 (Shear Rate Effect on Undrained Shear Behavior of Holocene Clay)

  • 정민수;채종길;시부야 사토루
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1181-1192
    • /
    • 2008
  • A laboratory investigation was carried out into effects of strain rate on undrained shear behavior of Holocene clay underneath Kobe Airport with an objective to evaluate the factor of safety of the retaining structure built on it. It was examined in a series of triaxial compression and extension tests performed using different rate of axial straining. A comparative compression test in which the strain rate was changed in steps was also carried out. Similar tests were performed in constant-volume direct shear box (DSB) test. And, the deformation characteristics of the clay were also examined in order to evaluate the variation of stiffness during undrained shearing. It was found that the undrained strength increased with not only the shear rate but also the consolidation period. ISOTACH properties seemed a key to govern the undrained shear behavior.

  • PDF

환상 파이프 내에서의 의소성 유체를 이용한 열전달 향상에 관한 연구 (Investigation of Heat Transfer Augmentation with Pseudoplastic Fluids in Annular Pipes)

  • 이동렬
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.85-91
    • /
    • 2011
  • Computational results with pseudoplastic fluid flows for fully developed non-Newtonian laminar flows have been obtained. Those consist of the product of friction factor and Modified Reynolds number and Nusselt numbers with respect to the shear rate parameter in an annular pipe. The numerical results of the product of friction factor and Reynolds numbers and the Nusselt numbers for both Newtonian region and the power law region were compared with previously published asymptotic results, respectively. In the present calculations, the product of friction factor and Newtonian Reynolds numbers for pseudoplastic fluid at power law region in annular pipe is 180% less than that for Newtonian fluid. For power law fluids with different power law flow indices, the difference of the product of friction factor and power law Reynolds number between previous and the present results at the power law region is within 0.20%. The solutions also show the effect of the shear rate parameter on the Nusselt number and about 11% increase of Nusselt number at the power region.