• Title/Summary/Keyword: Shear center

Search Result 1,174, Processing Time 0.022 seconds

Numerical Study on Roughness Effect for Axi-symmetry Submerged Body in High Reynolds Number (고 레이놀즈 수에서의 축대칭 몰수체의 거칠기에 대한 수치연구)

  • Joung, Tae-Hwan;Song, Hyung-Do;Yum, Jong-Gil;Song, Seongjin;Park, Sunho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.246-252
    • /
    • 2018
  • In this paper, the friction drag force of 3D submerged body is investigated by considering the surface roughness, the first grid height, and the Reynolds number using open CFD source code, OpenFOAM 4.0. A procedure for estimating drag components by CFD code is set up and suggested in this study. In the 3D submerged body, because of the form factor in the 3D computations, the friction resistance with the small roughness of $12{\mu}m$ obtains different result with the smooth wall. As the Reynolds number increased, the boundary layer becomes thinner and the fiction resistance tends to decrease. In the computations for the effect of y+, the friction resistance and wall shear stress are excessively predicted when the y+ value deviates from the log layer. This is presumably because the boundary layer becomes thicker and the turbulence energy is excessively predicted in the nose due to the increase in y+ value. As the roughness increases, the boundary layer becomes thicker and the turbulence kinetic energy on the surface increases. From this study, the drag estimation method, considering the roughness by numerical analysis for ships or offshore structures, can be provided by using the suggested the y+ value and surface roughness with wall function.

Simplified Analysis Formula for the Interaction of the Launching Nose and the Superstructure of ILM Bridge (압출추진코와 ILM 교량 상부구조 상호작용 해석식의 단순화)

  • Lee, Hwan-Woo;Jang, Jae-Youp
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.245-258
    • /
    • 2012
  • ILM(incremental launching method) is a way of construction, installing a girder producing spot behind the abutment, making the bridge girder infilled with concrete continuously and launching with using by jack. The superstructure of the bridge constructed by this method is temporarily located on the center of the span and the supporting points under construction. Therefore, the sections are structurally undergone maximum positive moment, maximum negative moment, and maximum shear force arising from self weight. On the other hand, launching nose is attached to the front of the girder to decrease the cantilever effect. The magnitude of this temporary stress creating on the upper section is dependent upon the launching nose's characteristics. This study has proposed an analysis formula simplified on the assumption that the launching nose section is a quasi-equivalent section(rigid; equivalent section, weight; tapered section) in order to ensure the accuracy of the analysis formula and improve its usage with reference to the interaction between the launching nose and the upper section; and a prismatic analysis formula modified by displacing a diaphragm's weight by a concentrated load in order to improve the accuracy of the existing analysis formula that assumes the launching nose section as the equivalent section. To judge the accuracy and usage of two analysis formulas proposed, we have compared and analyzed computational structural analysis programs and existing analysis formulas based on actual ILM bridge data. As a result, all of two reveal the superior accuracy and also their usage has been improved by the simplification of analysis formulas.

Changes of Vacuum Packed Pork Quality during Storage after Aging with Korean Traditional Sauces

  • Moon, Sung-Sil;Jin, Sang-Keun;Kim, Il-Suk;Park, Ki-Hoon;Hah, Kyung-Hee
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.315-321
    • /
    • 2006
  • Sixteen somimembranosus muscles were seamed out from sixteen left carcasses. They were cut into $7{\times}10{\times}2cm$ pieces and mixed randomly. Samples were assigned to four treatments: (T1) soy-based sauce; (T2) Kimchi-based sauce; (T3) pickled shrimp-based sauce; and (T4) onion-based sauce. Each treatment was aged in plastic box at $1^{\circ}C$ for 10 days. These samples were vacuum-packaged after treatment with sauces and held in a chill at $1^{\circ}C$ for 28 days. The pH of aged port in general, was decreased significantly (p<0.05) with storage in all treatments. Its falling rate was the slowest in T4 of all treatments, while it was faster in T2 and T3 than in T4. The salinity of aged pork was decreased (p<0.05) for T2 with increased storage days, but increased (p<0.05) for T1. The salinity showed T2 to be significantly higher (p<0.05) than T1 and T4 on 1 day, but to be lower(p<0.05) than T1 on 28 day. The saccharinity of T3 was significantly higher (p<0.05) on 1 day than those of T1 and T4, but decreased (p<0.05) on 14 and 28 day. While saccharinity of T1 was significantly the lowest(p<0.05) of all treatments on 1 day and increased (p<0.05) with increased storage days. For T1 and T2, the WHC (water holding capacity) results showed higher (p<0.05) on 14 day than on 1 and 28 day. On 28 day, the WHC result showed T4 to be the highest(p<0.05) of all treatments, but T2 to be the lowest (p<0.05). On 28 day, the shear force results showed a big difference (p<0.05) among treatments, being in order of T4>T3>T2>T1. Panelists rated T1 as having higher(p<0.05) aroma, flavor and overall acceptability than other treatments.

Effects of Artificial Culture Medium of Wild Ginseng on the Physico-chemical Characteristics of Pork (돈육의 이화학적 품질 특성에 미치는 산삼 배양액 급여 영향)

  • Jin, Sang-Keun;Kim, Il-Suk;Jung, Hyun-Jung;Kim, Dong-Hoon;Lee, Jae-Ryong
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.337-342
    • /
    • 2006
  • A total of 120 pigs (Berkshire) were used to investigate the effect of dietary supplementation with artificial culture medium of wild ginseng (CWG) on the physico-chemical characteristics of pork About $60{\pm}3kg$ pigs were randomly assigned to 4 pens based on sex and diet (C: commercial diet feed or T: commercial diet+1 L CWG per day for 70 days). Pigs were slaughtered at approximately 110 kg live weight, and proximate composition and physico-chemical characteristics were measured in pork loin. The moisture content, hardness and chewiness of pork were higher in gilt fed CWG than in gilt fed the control diet, but the water-holding capacity of pork and $L^*$ values of fat color were lower. The shear force and $a^*$ values of pork were higher in barrow fed CWG than in harrow fed the control diet. The crude fat content, hardness, cohesiveness, chewiness of pork and $a^*\;and\;b^*$ values of fat color were lower in barrow than in gilt, but the pH was higher. These results imply that the proximate composition and physico-chemical characteristics of pork could be affected by dietary supplementation with CWG and the sex of the pig, while the texture properties and at values of pork may be improved with dietary CWG.

A Stability Analysis of Geosynthetics Reinforced Soil Slopes I. - Slope Stability Analysis Considering Reinforcing Effects - (토목섬유 보강 성토사면의 안정해석 I. - 보강효과를 고려한 사면안정해석 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.95-105
    • /
    • 2005
  • Generally, a modified version of limit equilibrium method can be used to evaluate a slope stability of the geosynthetic reinforced soil slopes. In most cases, resisting effects of geosynthetic reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. As we know, the pattern of normal stress distribution along the slip surface is the key factor in calculating the safety factor of slopes. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equations can be satisfied was proposed with assuming the normal stress distribution along the slip surface as quadratic curve with horizontal $\chi-coordinate$. A number of illustrative examples, including published slope stability analysis examples for the reinforced and unreinforced soil slopes, loading test of large scale reinforced earth wall and centrifuge model tests on the geotextile reinforced soil slopes, were analyzed. As a result, it is shown that the newly suggested method yields a relatively accurate factor of safety for the reinforced and unreinforced soil slopes.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.

Continuity for Double Tee Slabs (더블티 슬래브의 연속화)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • The main objective of this study is to develop a continuity of double tee slab with two modified dap-ends to solve the problems of excessive moment, slab depth, deflection, and joint cracking in the original simply supported double tee slab systems. The modified joint is produced in a combination with two slabs with modified dap and one rectangular beam. The modified joint can be justified as following different merits. The span capacity for a design load is increased, while the deflection of the slab is decreased due to the decrease of positive moment at the center span of the slab. The joint cracking between slab and beam, which occur frequently in the original slab systems of double tee will be reduced. No more additional form work is needed to cast topping concrete for continuity. Three point loading tests are performed on the specimens with a variable of an amount of main longitudinal reinforcement to evaluate flexural and shear behavior. Following conclusions are obtained from the experimental investigation. The continuity of double tee slab effectively is provided by placing longitudinal steel reinforcement in the topping concrete over the connection, and generally leads to an increase in span capacity of double tee slabs with reduced deflection. It is more effective to control the initial cracking at the connection than that of some simply supported double tee slab systems.

Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

  • Al-Shehri, Eman Z.;Al-Zain, Afnan O.;Sabrah, Alaa H.;Al-Angari, Sarah S.;Dehailan, Laila Al;Eckert, George J.;Ozcan, Mutlu;Platt, Jeffrey A.;Bottino, Marco C.
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.206-215
    • /
    • 2017
  • Objectives: To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide ($Al_2O_3$) particles at different pressures. Materials and Methods: Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar), and each group was further divided into 2 groups depending on aging parameters (n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and ${\chi}^2$ tests (${\alpha}=0.05$). Results: The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05). The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions: CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used.

Effect of visual marbling levels in pork loins on meat quality and Thai consumer acceptance and purchase intent

  • Noidad, Sawankamol;Limsupavanich, Rutcharin;Suwonsichon, Suntaree;Chaosap, Chanporn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1923-1932
    • /
    • 2019
  • Objective: We investigated visual marbling level (VML) influence on pork loin physicochemical traits, consumer palatability responses, VML liking, purchase intent, and their relationships. Methods: For each of five slaughtering dates, at 24-h postmortem, nine paired Duroc castrated male boneless Longissimus dorsi (LD) muscles were categorized into low (LM, score 1 to 2, n = 3), medium (MM, score 3 to 4, n = 3), and high (HM, score 5 to 6, n = 3) VML. Meat physicochemical quality traits and consumer responses (n = 389) on palatability and VML liking, and purchase intent were evaluated. The experiment was in randomized complete block design. Analysis of variance, Duncan's multiple mean comparisons, and correlation coefficients were determined. Results: VML correspond to crude fat (r = 0.91, p<0.01), but both were reversely related to moisture content (r = -0.75 and -0.91, p<0.01, respectively). As VML increased, ash (p<0.05) and protein (p = 0.072) decreased, pH and $b^{\star}$ increased (p<0.05), but drip, cooking (p<0.05) and thawing (p = 0.088) losses decreased. Among treatments, muscle fiber diameter, sarcomere length, total and insoluble collagen contents, $L^{\star}$, and $a^{\star}$ did not differ (p>0.05). Compared to the others, HM had lower collagen solubility percentage (p<0.05), but similar (p>0.05) Warner-Bratzler shear force (WBSF). No differences (p>0.05) were found in juiciness, overall flavor, oiliness, and overall acceptability, but HM was more tender (p<0.05) than the others. Based on VML, consumers preferred MM to HM (p<0.05), while LM was similar to MM and HM (p>0.05). Corresponding to VML preference (r = 0.45, p<0.01), consumers (83%) would (p<0.01) definitely and probably buy MM, over LM (74%), and HM (68%), respectively. Conclusion: Increasing VML in pork LD altered its chemical composition, slightly increased pH, and improved water holding capacity, thereby improving its tenderness acceptability. Marbling might reduce chewing resistance, as lower collagen solubility in HM did not impact tenderness acceptability and WBSF. While HM was rated as most tender, consumers visually preferred and would purchase MM.