• Title/Summary/Keyword: Shear bond stress

Search Result 147, Processing Time 0.028 seconds

Shear bond strength of a layered zirconia and porcelain according to treatment of zirconia liner (치과용 지르코니아 이장재 처리에 따른 지르코니아와 도재의 전단결합강도 비교)

  • Seo, Jeong Il;Park, Won Uk;Kim, Yang Geun
    • Journal of Technologic Dentistry
    • /
    • v.39 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • Purpose: Physical and chemical properties of gold is most suitable to be restored of teeth to its original state. Recently zirconia was used instead of gold because of esthetical and intimacy of human body. Because of high strength and high abrasion resistance of zirconia, all zirconia artificial tooth lead to wear the original tooth of opposite site. To preserve this original tooth, zirconia artificial tooth covered with dental ceramic glass was used. When joining the zirconia core and dental ceramic glass, difference of their thermal expansion coefficient and wetting ability is generated the residual stress at interface lead to crack. In order to solve this problem, intermediate layer what is called zir-liner was imported to decrease the residual stress and increase the bonding strength. Methods: In this study, to identify the optimum conditions for manufacturing process, various methods to rough the surface of zirconia core were adopted, and vary the thickness of interlayer, and analyzed bond strength. Results: Bond strength of sanding specimens group showed higher than that of non-sanding specimens group, and once applied intermediate layer with sanding specimens showed highest bond strength with 28 MPa. SEM photomicrographs of zirconia cores fired at $1500^{\circ}C$ showed parallel straight lines in sanding and pockmarked surface in blasting surfaces as abrasion traces. Observation of the destruction section after shear test by SEM were carried out. Liner applied non-sanding group and non-liner applied sanding group all showed interfacial crack. Sandblasting group with non-liner showed remained dental ceramic glass on the surface of zirconia. Sandblasting group with once applied liner showed partially remained liner and dental ceramic glass on the surface of zirconia. XRD analysis revealed that sandblasting group showed higher monoclinic peaks than other specimens group and this result was due to the high collision energy for stress induced phase transformation. Conclusions: A study on the improvement of bonding strength between zirconia and dental ceramic glass steadily carried out for the future to practical use.

Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force

  • Abderezak, Rabahi;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.91-109
    • /
    • 2022
  • This paper presents a closed-form higher-order analysis of interfacial shear stresses in RC continuous beams strengthened with bonded prestressed laminates. For retrofitting reinforced concrete continuous beams is to bond fiber reinforced prestressed composite plates to their tensile faces. An important failure mode of such plated beams is the debonding of the composite plates from the concrete due to high level of stress concentration in the adhesive at the ends of the composite plate. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the RC continuous beams strengthened with bonded prestressed laminates. The theoretical predictions are compared with other existing solutions. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate stiffness and the thickness of the laminate where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member.

A Study for Adfreeze Bond Strength Developed between Weathered Granite Soils and Aluminum Plate (동결된 화강풍화토와 알루미늄판 접촉면에서 발현되는 동착강도 측정 연구)

  • Lee, Joonyong;Kim, Youngseok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.23-30
    • /
    • 2013
  • Bearing capacity of pile is governed by only skin friction in frozen ground condition, while it is generally governed both by skin friction and end bearing capacity in typically unfrozen ground condition. Skin friction force, which arises from the interaction between pile and frozen soils, is defined as adfreeze bond strength, and adfreeze bond strength is one of the most important key parameters for design of pile in frozen soils. Many studies have been carried out in order to analyze adfreeze bond strength characteristics over the last fifty years. However, many studies for adfreeze bond strength have been conducted with limited circumstances, since adfreeze bond strength is sensitively affected by various influence factors such as intrinsic material properties, pile surface roughness, and externally imposed testing conditions. In this study, direct shear test is carried out inside of large-scaled freezing chamber in order to analyze the adfreeze bond strength characteristics with varying freezing temperature and normal stress. Also, the relationship between adfreeze bond strength and shear strength of the frozen soil obtained from previous study was analyzed. The coefficient of adfreeze bond strength was evaluated in order to predict adfreeze bond strength based on shear strength, and coefficients suggested from this and previous studies were compared.

Investigation of Shear Design Expressions of Large-Diameter Concrete-Filled Steel Tubes(CFT) (대구경 콘크리트 충전형 합성기둥의 전단 설계식 분석)

  • Jung, Eun Bi;Yeom, Hee Jin;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.399-410
    • /
    • 2015
  • Concrete filled steel tube(CFT) has outstanding deformation capacity and strength in comparison with reinforced concrete or steel tube. CFT drilled shaft, which is developed large shear force due to seismic load and soil liquefaction, is designed as large diameter. However, shear design equations of the current standards do not consider bond stress of CFT and it results in extremely conservative design. Currently, previous studies for improving shear equations scarcely exist and are impossible applied to large CFT drilled shafts since these studies focus on only small scale experimental research. In this study, eventually to propose improving shear equation of large diameter CFT, it is preliminary research to compare and investigate the previous studies and current standards.

Bond between Carbon Fibers Sheet and Concrete (탄소섬유쉬트와 콘크리트의 부착)

  • 최근도;류화성;최기선;이한승;유영찬;김긍환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1019-1024
    • /
    • 2000
  • Carbon fiber sheet has been widely used for the strengthening of the concrete buildings structures due to its excellent physical properties such as high strength, lightness and high durability. Bond strength or behavior, on the other, hands, between carbon fiber sheet and concrete is very important in strengthening the concrete member using CFS. Also the bond failure mechanism between CFS and concrete should be fully verified and understood. This study is to investigate the bond strength of CFS to th concrete by the direct pull-out test and the tensile-shear test methods. From the tests, the average bond stress, $$\tau$_{y}$ and the effective bond length, $$\ell$_{u}$ are acquired.

Analysis for Cokes Fracture Behavior using Discrete Element Method (이산요소법을 이용한 코크스 분화 거동 해석)

  • You, Soo-Hyun;Park, Junyoung
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • The strength of lumped cokes can be represented by some index numbers. Although some indexes are suggested, these indexes are not enough to enlighten fracture mechanism. To find essential mechanism, a computational way, discrete element method, is applied to the uniaxial compression test for cylindrical specimen. The cylindrical specimen is a kind of lumped particle mass with parallel bonding that will be broken when the normal stress and shear stress is over a critical value. It is revealed that the primary factors for cokes fracture are parallel spring constant, parallel bond strength, bonding radius and packing ratio the parallel bond strength and radius of the parallel combination the packing density. Especially, parallel spring constant is directly related with elastic constant and yield strength.

Experimental Study on Interfacial Bond Stress between Aramid FRP Strips and Steel Plates (아라미드 FRP 스트립과 강판 사이의 계면 부착응력에 관한 실험적 연구)

  • Park, Jai Woo;Ryoo, Jae Yong;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.359-370
    • /
    • 2015
  • This paper presents the experimental results for the interfacial bond behaviour between AFRP strip and steel members. The objective of this paper is to examine the interfacial behavior and to evaluate the interfacial bond stress between Aramid FRP strips and steel plates. The test variables were bond length and AFRP thickness. 18 specimens were fabricated and one-face shear type bond tests were conducted in this study. There were two types of failure mode which were debonding and delamination between AFRP strip and steel plates. From the test, the load was increased with the increasing of bond length and AFRP thickness, which was observed that maximum increase of 63 and 86% were also achieved in load with the increasing of bond length and AFRP thickness, respectively. Finally, bond and slip characteristics had the elastic bond-slip model and it was observed that bond strength and fracture energy were not affected by bond length and AFRP thickness.

A STUDY ON THE ADHESION OF A SOFT LINER CONTAINING 4-META TO THE BASE METAL ALLOY AND ITS VISCOELASTIC PROPERTY

  • Park Hyun-Joo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.732-746
    • /
    • 2003
  • Statement of problem. Soft lining materials, also referred to as tissue conditioning materials, tissue heating materials, relining materials, soft liners or tissue conditioners, were first introduced to dentistry by a plastic manufacturer in 1959. Since the introduction of the materials to the dental field, their material properties have been continually improved through the effort of many researchers. Soft lining materials have become widely accepted, particularly by prosthodontists, because of their numerous clinical advantages and ease of manipulation. Unfortunately, few reports have been issued upon the topic of increasing the bond strength between the base metal alloy used in cast denture bases and PMMA soft liner modified with 4-META, nor upon the pattern of debonding and material change in wet environment like a intra oral situation. Purpose. The purposes of this study were comparing the bond strength between base metal alloy used for the cast denture bases and PMMA soft liner modified with 4-META, and describing the pattern of debonding and material property change in wet environment like the intraoral situation. Material and Methods. This study consisted of four experiments: 1. The in vitro measurement of shear bond strength of the adhesive soft liner. 2. The in vitro measurement of shear bond strength of the adhesive soft liner after 2 weeks of aging. 3. A comparison of debonding patterns. 4. An evaluation the Relation time of modified soft liner. The soft liner used in this study was commercially available as Coe-soft (GC America.IL.,USA), which is provided in forms of powder and liquid. This is a PMMA soft liner commonly used in dental clinics. The metal primer used in this study was 4-META containing primer packed in Meta fast denture base resin (Sun Medical Co., Osaka, Japan). The specimens were formed in a single lap joint desist which is useful for evaluating the apparent shear bond strength of adhesively bonded metal plate by tensile loading. Using the $20{\times}20mm$ transparent grid, percent area of adhesive soft liner remaining on the shear area was calculated to classify the debonding patterns. To evaluate the change of the initial flow of the modified adhesive soft liner, the gelation time was measured with an oscillating rheometer (Haake RS150W/ TC50, Haake Co., Germany). It was a stress control and parallel plate type with the diameter of 35mm. Conclusion. Within the conditions and limitations of this study, the following conclusions were drawn as follows. 1. There was significant increase of bond strength in the 5% 4-META, 10% 4-META containing groups and in the primer coated groups versus the control group(P<0.05). 2. After 2 weeks of aging, no significant increase in bond strength was found except for the group containing 10% 4-META (P<0.05). 3. The gelation times of the modified soft liner were 9.3 minutes for the 5% 4-META containing liner and 11.5 minutes for the 10% 4-META liner. 4. The debonding patterns of the 4-META containing group after 2 weeks of aging were similar to those of immediaely after preparation, but the debonding pattern of the primer group showed more adhesive failure after 2 weeks of aging.

Evaluation of Bond Properties of Reinforced Concrete with Corroded Reinforcement by Uniaxial Tension Testing

  • Kim, Hyung-Rae;Choi, Won-Chang;Yoon, Sang-Chun;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.43-52
    • /
    • 2016
  • The degradation of the load-bearing capacity of reinforced concrete beams due to corrosion has a profoundly negative impact on the structural safety and integrity of a structure. The literature is limited with regard to models of bond characteristics that relate to the reinforcement corrosion percentage. In this study, uniaxial tensile tests were conducted on specimens with irregular corrosion of their reinforced concrete. The development of cracks in the corroded area was found to be dependent on the level of corrosion, and transverse cracks developed due to tensile loading. Based on this crack development, the average stress versus deformation in the rebar and concrete could be determined experimentally and numerically. The results, determined via finite element analysis, were calibrated using the experimental results. In addition, bond elements for reinforced concrete with corrosion are proposed in this paper along with a relationship between the shear stiffness and corrosion level of rebar.

A Syudy on the Diffusion Joining of 7000 Al Alloy (7000계 Al 합금의 확산접합에 관한 연구)

  • Jin, Y.C.;Hong, E.S.;Kim, Y.S.;Lee, M.S.;Yoo, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 1993
  • To investigate the properties of diffusion bonding of 7050 Al alloy, the diffusion bonding joints have been produced in self-made diffusion bonding hot-press which admits a defined application of the bonding pressure during the heating phase and also rapid cooling after the bonding process with various bonding condition. The strength of the bond increases with increasing the bonding time and temperature. Shear test at toom temperature showed that high strength up to 70% that of parent metal (320 MPa), 220 MPa for the specimen bonded 14 hr at $560^{\circ}C$, with 3 MPa. In this case, however, there is large deformation more than 20% reduction in thickness. The results were correlated with joint characteristics found by optical microstructure and by fractography by SEM. When the strengths of the bonds are more than 50% that of parent metal, a great deal of dimples stretched along the direction of shear stress are observed over the fractured surface of the bond. On the microstructure of the bond line, initial mophology of the bond line disapeared for the grain boundary migration with increasing the bonding time.

  • PDF