• Title/Summary/Keyword: Shear bond

Search Result 979, Processing Time 0.022 seconds

Shear bond strength of veneering ceramic to coping materials with different pre-surface treatments

  • Tarib, Natasya Ahmad;Anuar, Norsamihah;Ahmad, Marlynda
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.339-344
    • /
    • 2016
  • PURPOSE. Pre-surface treatments of coping materials have been recommended to enhance the bonding to the veneering ceramic. Little is known on the effect on shear bond strength, particularly with new coping material. The aim of this study was to investigate the shear bond strength of veneering ceramic to three coping materials: i) metal alloy (MA), ii) zirconia oxide (ZO), and iii) lithium disilicate (LD) after various pre-surface treatments. MATERIALS AND METHODS. Thirty-two (n = 32) discs were prepared for each coping material. Four pre-surface treatments were prepared for each sub-group (n = 8); a) no treatment or control (C), b) sandblast (SB), c) acid etch (AE), and d) sandblast and acid etch (SBAE). Veneering ceramics were applied to all discs. Shear bond strength was measured with a universal testing machine. Data were analyzed with two-way ANOVA and Tukey's multiple comparisons tests. RESULTS. Mean shear bond strengths were obtained for MA ($19.00{\pm}6.39MPa$), ZO ($24.45{\pm}5.14MPa$) and LD ($13.62{\pm}5.12MPa$). There were statistically significant differences in types of coping material and various pre-surface treatments (P<.05). There was a significant correlation between coping materials and pre-surface treatment to the shear bond strength (P<.05). CONCLUSION. Shear bond strength of veneering ceramic to zirconia oxide was higher than metal alloy and lithium disilicate. The highest shear bond strengths were obtained in sandblast and acid etch treatment for zirconia oxide and lithium disilicate groups, and in acid etch treatment for metal alloy group.

A STUDY ON THE SHEAR BOND STRENGTH OF THE COMPOSITE RESIN ACCORDING TO THE SURFACE TREATMENT OF THE BLAEACHED ENAMEL (표백된 법랑질의 표면처리방법에 따른 복합레진과의 전단결합강도에 관한연구)

  • Kim, Eun-Hee;Cho, Young-Gon;Hwang, Ho-Keel
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.351-361
    • /
    • 1995
  • The purpose of this study was to evaluate the shear bond strength of the composite resin bonded on the bleached enamel surface according to its surface treatment. 90 extracted human premolars were divided into six groups. : enamel unbleached (control group) and enamel bleached with 15% carbamide peroxide for 2 weeks (experimental groups: 1, 2, 3, 4 and 5). The surface of bleached enamel in all experimental groups was treated by following manners. Experimental group 1 : catalase immersion for 3 mimutes. Experimental group 2 : catalase immersion for 15 mimutes. Experimental group 3 : artificial saliva immersion for 1 hour. Experimental group 4 : artificial saliva immersion for 48 hours. Experimental group 5: surface reduction of the bleached enamel about 0.5mm-1mm with superfine diamond bur. Composite resin molds(3mm height, 3mm diameter) were bonded to the untreated enamel and treated. The shear bond strengths of composite resin bonded to enamel of each specimen were tested with universal testing machine at a crosshead speed of 5mm/min and 500Kg in full scale and analyzed statistically. The following results were obtained : 1. Control group had the highest shear bond strength with $19.92{\pm}5.14$ MPa and experimental group 5 had the lowest shear bond strength with $11.15{\pm}4.23$ MPa. 2. Control group showed significant differences in shear bond strength with experimental group 1(P<0.05). 3. Control group showed significant differences in shear bond strength with experimental group 5(P<0.05). 4. Experimental group 4 showed significant differences in shear bond strength with experimental group 5(P<0.05). 5. Experimental group 3 showed no significant differences in shear bond strength with experimental group 4(P<0.05).

  • PDF

AN EXPERIMENTAL STUDY FOR SHEAR BOND STRENGTH OF COMPOISTE RESIN USING SEVERAL DENTIN BONDING AGENTS AND LIGHT CURED GLASS IONOMER CEMENT (상아질 접착제를 사용한 광중합 복합레진과 Glass Ionomer Cement의 전단 결합력에 관한 연구)

  • Kwon, Byung-Ryul;Lee, Jae-Ho;Choi, Hyung-Jun;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.450-460
    • /
    • 1996
  • The purpose of this study was to compare shear bond strength of composite resin using several dentin bonding agents and light cured glass ionomer cement(Fuji II LC). 40 Bovine primary anterior teeth were used for this experiment. Labial surface of teeth were flattened. It were divided into four groups. Each group was composed of 10 teeth. The material used for this experiment were Scotchbond Multipurpose-Z-100, Allbond 2-Aelitefil, Gluma-Pekalux, light cured glass ionomer cement(Fuji II LC). Each of the materials was applied to the exposed surfaces of 10 teeth by insertion into a cylindrical shaped matrix which is 3mm diameter and 3mm in height. The completed specimens were stored at $37^{\circ}C$ under 100% humidity for 24 hours : the shear bond strength of each material to dentin surface were measured with INSTRON universal testing machine. The results were as follows : 1. Shear bond strength to dentin surface increased in order of light cured glass ionomer cement(Fuji II LC), Gluma, Allbond 2, Scotchbond Multipurpose. 2. Between shear bond strength of light cured glass ionomer cement(Fuji II LC) and Allbond 2, there was statistical significace(p<0.05) 3. Between shear bond strength of light cured glass ionomer cement(Fuji II LC) and Scotchbond Multipurpose, between shear bond strength of Gluma and Scotchbond Multipurpose, there was statistical significance.(p<0.01) The shear bond strength of dentin bonding agents were higher than light cured glass ionomer cement. The reason is that materials and quality of dentin bonding agent were enhanced. Further investigation is necessary to improve shear bond strength of light cured glass ionomer cement.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH OF COMPOMER ACCORDING TO SURFACE TREATMENT (Compomer의 치면처리방법에 따른 전단 결합 강도에 관한 연구)

  • Kim, Jin-Yong;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.247-256
    • /
    • 1998
  • To evalutate the change in shear bond strength according to dentin surface treatment, 4 materials were divided into control group(A) and experimental group(B). Group A was treated according to the instruction of manufacture. Group B was treated with 32% phosphoric acid. After dentin surface treatment, each material was bonded and stored in 100% humidity during 7 days, and then, the shear bond strength was evaluated. The results were as follows: 1. In the case of treatment according to the instruction of manufacture, the shear bond strength according to material showed Z-100 to be highest with 12.42 MPa, Compoglass had the lowest shear bond strength with 4.23 MPa and there was significant difference between Compoglass and Z-100, Dyract (p<0.01). 2. The group treated with 32% phosphoric acid showed lower shear bond strength than that of the group treated according to the instruction of manufacture but there was no statistical significance. 3. As a result of observation under SEM, the fracture pattern was a mixture of cohesive and adhesive failure in group 1, and there was more adhesive failure in group 2, and in group 3 and 4 there was cohesive failure of material or tooth structure. From the results above Dyract showed shear bond strength levels between resin and resin -modified glass ionomer but Compoglass showed much lower shear bond strength than that of resin-modified glass ionomer thus indicating that even though they are the same type of material they show evident differences in physical properties. And it is thought that the treatment of dentin surface with phosphoric acid did not increase the shear bond strength, unlike enamel.

  • PDF

CHANGES OF THE DEGREE OF CONVERSION AND SHEAR BOND STRENGTH ACCORDING TO THE MONOMER RATIO OF EXPERIMENTAL BONDING RESINS (실험적 접착레진의 단량체 조성비에 따른 중합률 및 전단결합강도 변화에 관한 연구)

  • Moon, Anne-Jay;Kim, Byung-Hyun;Cho, Byeong-Hoon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.26-39
    • /
    • 1999
  • Bis-GMA, the representative monomer of bonding resin, contributes to the rigidity of bonding layer. Hydrophilic monomer contributes to the permeability into dentin substrates while weaken the bonding layer due to its small molecular weight. The degree of conversion also contributes to the ultimate strength of the bonding layer. This study was performed for the correlation analysis of monomer ratio and dentin bonding strength via degree of conversion. 7 experimental bonding resins were prepared with Bis-GMA, ratio from 20% to 80% by 10% increment, and hydrophilic HEMA monomer. Their degree of conversion and shear bond strength to dentin were compared with Scotchbond Multi-Purpose adhesive, and the fractured surfaces were examined microscopically. The results were as follows; 1. The degree of conversion increased when, the ratio of Bis-GMA increased from 20% to 70%, whereas it decreased when the ratio of Bis-GMA was 80%. 2. Shear bond strengths of the experimental bonding resins of 80%, 70%, 60% ratio of Bis-GMA were significantly higher than those of the experimental bonding resin of 50% ratio of Bis-GMA and Scotchbond Multi-Purpose adhesive. Lower shear bond strengths were obtained with the experimental bonding resins of 40%, 30%, 20% ratio of Bis-GMA (p<0.05). 3. Adhesive fractures were associated with the bonding resins of the lower bond strength, while cohesive fractures within the bonding resin layer were associated with the bonding resins of higher bond strength. Bonding resins with shear bond strength higher than 18MPa showed some cohesive fractures within the composite resin or within the dentin. 4. Correlations between Bis-GMA ratio and the degree of conversion (r=0.826), between Bis-GMA ratio and shear bond strength (r=0.853), and between the degree of conversion and shear bond strength (r=0.786) were significant (p<0.05).

  • PDF

Shear Bond Strengths of Dentin Bonding Agent containing 0.2% Chlorhexidine (클로르헥시딘을 함유한 상아질 결합제의 전단결합강도)

  • Kim, Jinhyock;Kim, Kiseob;Kim, Jongsoo;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • The purpose of this study is to investigate shear bond strengths of $Peak^{(R)}$ Universal Bond (Ultradent, USA) containing 0.2% chlorhexidine in bovine dentin. Total of 30 bovine teeth were divided into three groups, 10 teeth each. Before comparing and evaluating shear bond strength, in group I, $Adper^{TM}$ Single Bond Universal (3M ESPE, USA) was applied, in group II, processing with $Consepsis^{(R)}$ (Ultradent, USA) was followed by applying $Adper^{TM}$ Single Bond Universal, and in group III, $Peak^{(R)}$ Universal Bond was applied and filled with $Filtek^{TM}$ Z-350 XT (3M/ESPE, USA) shade B3. As a result, processing with $Consepsis^{(R)}$ after acid etching showed no statistically significant influence on shear bond strength of dentin (p > 0.05). The shear bond strength of with or without $Consepsis^{(R)}$ on $Adper^{TM}$ Single Bond Universal and that of $Peak^{(R)}$ Universal Bond showed statistically significant difference (p < 0.05).

SHEAR BOND STRENGTH OF COMPOMER ACCORDING TO DENTIN SURFACE TREATMENT (상아질 표면 처리 방법에 따른 Compomer의 전단 결합 강도)

  • 오영학;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.171-179
    • /
    • 2001
  • The purpose of this study was to evaluate the shear bond strength of compomers according to dentin surface treatment. Two materials of compomer were devided into six groups. The compomer used in this study were Dyract AP(D) and F2000(F), Group 1 (DN) and 4(FN) were treated according to manufacturers instructions as control groups. Group 2(DE) and 5(FE) were treated with 37% phosphoric acid and group 3(DA) and 6(FA) were treated with air abrasion unit (80 psi, 50 m aluminum oxide particles) respectively as experimental groups. After dentin surface treatment, compomers were bonded. Completed samples were stored in 100% humidity. 37C during 7 days, and then, the shear bond strength of specimens were evaluated. The results were as follows: 1. In the case of Dyract AP, the shear bond strength was showed the highest value of 9.10 MPa in dentin surface treatment with air abrasion unit. but there were no significant differences to the other groups. 2. In the case of F2000. the shear bond strength was showed the highest value of 13.51MPa and there were significant differences to the other groups(p<0.05). 3. The shear bond strength of F2000 was higher than Dyract AP in each dentin surface treatment. and in the case of etching and air abrasion. there were significant differences(p<0.05). 4. As a result of observation of SEM. the most of fracture pattern was adhesive failure in group 1(DN), 2(DE) and 4(FN), and cohesive failure in group 3(DA), S(FE) and 6(FA).

  • PDF

Effect of sandblasting and liner on shear bond strength of veneering ceramic to zirconia (샌드블라스팅 처리와 라이너가 지르코니아와 전장도재의 전단결합 강도에 미치는 영향)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.6-12
    • /
    • 2021
  • Purpose: This study aimed to compare the shear bond strength between zirconia cores and veneer ceramics as per the sand blasting and liner treatments. Methods: The following 4 groups of zirconia-veneering ceramic specimens were prepared: (1) Group I, untreated; (2) Group II, with 110 ㎛ aluminium oxide (Al2O3) sandblasting; (3) Group III, with liner (IPS e.max ZirLiner; Ivoclar Vivadent); and (4) Group IV, with 110 ㎛ Al2O3 sand blasting and liner. Surface roughness was measured for all the prepared specimens, and the surface morphology was observed using a scanning electron microscope. All the samples (n=40) were fixed with measuring jigs, and shear bond strengths were obtained using a universal testing machine with a crosshead speed of 0.5 mm/min. The shear bond strength data were analyzed using one-way analysis of variance and t-test. The post hoc comparison was performed using the Tukey's test (α=0.05). Results: A significant difference in the surface roughness was observed between the specimens of groups I and II (p<0.05). Surface treatment with liner and sandblasting showed higher shear bond strength between zirconia core and veneering ceramic (p<0.05). Conclusion: The sand blasting and liner treatment increased the shear bond strength between zirconia core and veneering ceramic.

Investigation of rate dependent shear bond properties of concrete masonry mortar joints under high-rate loading

  • John E. Hatfield;Genevieve L. Pezzola;John M. Hoemann;James S. Davidson
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.519-533
    • /
    • 2024
  • Many materials including cementitious concrete-type materials undergo material property changes during high-rate loading. There is a wealth of research regarding this phenomenon for concrete in compression and tension. However, there is minimal knowledge about how mortar material used in concrete masonry unit (CMU) construction behaves in high-rate shear loading. A series of experiments was conducted to examine the bond strength of mortar bonded to CMU units under high-rate shear loading. A novel experimental setup using a shock tube and dynamic ram were used to load specially constructed shear triplets in a double lap shear configuration with no pre-compression. The Finite Element Method was leveraged in conjunction with data from the experimental investigation to establish if the shear bond between concrete masonry units and mortar exhibits any rate dependency. An increase in shear bond strength was observed when loaded at a high strain rate. This data indicates that the CMU-mortar bond exhibits a rate dependent strength change and illustrates the need for further study of the CMU-mortar interface characteristics at high strain rates.

Evaluation of Slant Shear Strength of Recycled Asphalt Mixture with Different Tack Coat Applications (Tack Coat 使用條件에 따른 再活用 아스팔트 混合物의 附着剪斷 性能評價)

  • 김낙석
    • Resources Recycling
    • /
    • v.10 no.1
    • /
    • pp.32-41
    • /
    • 2001
  • Bond shear strengths of recycled asphalt concrete were evaluated under different tack coat applications. Regardless of the new and old mixtures, the bond shear strengths at $30^{\circ}C$ were increased by 10-20% than those at 1$0^{\circ}C$. The bond shear strengths of recycled asphalt concrete without tack coat showed very low ones. These are the main reasons for the frequent longitudinal interface crack in the field. The effect of tack coat curing time on bond shear strengths was inferior to the tack coat construction temperature.

  • PDF