• Title/Summary/Keyword: Shear Wave Velocity

Search Result 483, Processing Time 0.027 seconds

SPH Modeling of Hydraulics and Erosion of HPTRM Levee

  • Li, Lin;Rao, Xin;Amini, Farshad;Tang, Hongwu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Post-Katrina investigations revealed that most earthen levee damage occurred on the levee crest and landward-side slope as a result of either wave overtopping, storm surge overflow, or a combination of both. In this paper, combined wave overtopping and storm surge overflow of a levee embankment strengthened with high performance turf reinforcement mat (HPTRM) system was studied in a purely Lagrangian and meshless approach, two-dimensional smoothed particle hydrodynamics (SPH) model. After the SPH model is calibrated with full-scale overtopping test results, the overtopping discharge, flow thickness, flow velocity, average overtopping velocity, shear stress, and soil erosion rate are calculated. New equations are developed for average overtopping discharge. The shear stresses on landward-side slope are calculated and the characteristics of soil loss are given. Equations are also provided to estimate soil loss rate. The range of the application of these equations is discussed.

Development of Earthquake Prevention Technique Considering Geotechnical Site Characteristics of Korea (국내 지반조건이 고려된 지진 방재기술 확립 방안;지반분류 방법 개선 방안을 중심으로)

  • Kim, Dong-Soo;Yoon, Jong-Ku;Kim, Kyung-Teak;Cho, Seong-Ha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.154-162
    • /
    • 2005
  • In this paper, site response analyses were performed based on equivalent linear technique using the shear wave velocity profiles of 162 sites collected around the Korean peninsula. The site characteristics, particularly the shear wave velocities and the depth to the bedrock, are compared to those in the western United States. The results show that the site-response coefficients based on the mean shear velocity of the top 30m ($V_{S30}$) suggested in the current code underestimates the motion in short-period ranges and overestimates the motion in mid-period ranges. Also the current Korean code based on UBC is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. From the results of numerical estimations, new regression curves were derived between site coefficients ($F_a$ and $F_v$) and the fundamental site periods, and site coefficients were grouped based on site periods in the regions of shallow bedrock. The standard deviations of the proposed method was reasonable compared to site classification based on $V_{S30}$. Finally, new site classification system is recommended based on site periods for regions of shallow bedrock depth in Korea.

  • PDF

Settlement prediction for footings based on stress history from VS measurements

  • Cho, Hyung Ik;Kim, Han Saem;Sun, Chang-Guk;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.371-384
    • /
    • 2020
  • A settlement prediction method based on shear wave velocity measurements and soil nonlinearity was recently developed and verified by means of centrifuge tests. However, the method was only applicable to heavily overconsolidated soil deposits under enlarged yield surfaces. In this study, the settlement evaluation method was refined to consider the stress history of the sublayer, based on an overconsolidation ratio evaluation technique, and thereby incorporate irrecoverable plastic deformation in the settlement calculation. A relationship between the small-strain shear modulus and overconsolidation ratio, which can be determined from laboratory tests, was adopted to describe the stress history of the subsurface. Based on the overconsolidation ratio determined, the value of an empirical coefficient that reflects the effect of plastic deformation over the elastic region is determined by comparing the overconsolidation ratio with the stress increment transmitted by the surface design load. The refined method that incorporate this empirical coefficient was successfully validated by means of centrifuge tests, even under normally consolidated loading conditions.

Determination of Shear Wave Velocity Profiles of Natural Soils and Pavement Systems Using Surface Wave Technique (표면파 기법을 이용한 자연지반 및 포장지반의 전단파 속도 분포 추정에 관한 연구)

  • Woo, Je Yoon;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.49-57
    • /
    • 1988
  • A new analytical inversion technique is developed to determine the shear wave velocity profiles of natural soils and pavement systems from the dispersion curves of Rayleigh waves. Haskell's theory on the dispersion of the surface waves in multi-layered elastic solids is utilized. A frequency-unlimited dispersion equation is developed by use of the delta matrix technique. Rigid halfspace is assumed at the depth of the one wavelength of Rayleigh waves. Computer program is coded and validity of the technique is verified through the numerical model tests.

  • PDF

Stiffness Characterization of Subgrade using Crosshole-Type Dynamic Cone Penetrometer (크로스홀 형태의 동적 콘 관입기를 이용한 노반의 강성특성 평가)

  • Hong, Won-Taek;Choi, Chan Yong;Lim, Yujin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • In order to support the load of the train with enough stiffness, a study on an effective method for the characterization of the stiffness of the compacted subgrade is required. In this study, the crosshole-type dynamic cone penetrometer (CDCP) is used for the stiffness characterization of the subgrade along the depth. For the application of the CDCP test, three points of compacted subgrades are selected as the study sites. For the study sites, CDCP test, in-situ density test, and light falling weight deflectometer (LFWD) test are conducted. As the results of CDCP tests, shear wave velocity profiles are obtained by using the travel times and the travel distances of the shear waves along the depth. In addition, maximum shear modulus ($G_{max}$) profiles are estimated by using the density of the subgrades and the shear wave velocity profiles. The averaged maximum shear moduli at each testing point are highly correlated with the dynamic deflection moduli ($E_{vd}$) determined by LFWD tests. Therefore, a reliable stiffness characterization of the subgrade can be conducted by using CDCP tests. In addition, because CDCP characterizes the stiffness of the subgrade along the depth rather than a representative value, CDCP test may be effectively used for the stiffness characterization of the subgrade.

A novel four variable refined plate theory for wave propagation in functionally graded material plates

  • Fourn, Hocine;Atmane, Hassen Ait;Bourada, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.109-122
    • /
    • 2018
  • In This work an analysis of the propagation of waves of functionally graduated plates is presented by using a high order hyperbolic (HSDT) shear deformation theory. This theory has only four variables, which is less than the theory of first order shear deformation (FSDT). Therefore, a shear correction coefficient is not required. Unlike other conventional shear deformation theories, the present work includes a new field of displacement which introduces indeterminate integral variables. The properties of materials are supposed classified in the direction of the thickness according to two simple distributions of a power law in terms of volume fractions of constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT

  • Bennai, Riadh;Fourn, Hocine;Nebab, Mokhtar;Atmane, Redhwane Ait;Mellal, Fatma;Atmane, Hassen Ait;Benadouda, Mourad;Touns, Abdelouahed
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.169-183
    • /
    • 2022
  • In this article, vibrational behavior and wave propagation characteristics in (FG) functionally graded plates resting on Kerr foundation with three parameters is studied using a 2D dimensional (HSDT) higher shear deformation theory. The new 2D higher shear deformation theory has only four variables in field's displacement, which means has few numbers of unknowns compared with others theories. The shape function used in this theory satisfies the nullity conditions of the shear stresses on the two surfaces of the FG plate without using shear correction factors. The FG plates are considered to rest on the Kerr layer, which is interconnected with a Pasternak-Kerr shear layer. The FG plate is materially inhomogeneous. The material properties are supposed to vary smoothly according to the thickness of the plate by a Voigt's power mixing law of the volume fraction. The equations of motion due to the dynamics of the plate resting on a three-parameter foundation are derived using the principle of minimization of energies; which are then solved analytically by the Navier technique to find the vibratory characteristics of a simply supported plate, and the wave propagation results are derived by using the dispersion relations. Perceivable numerical results are fulfilled to evaluate the vibratory and the wave propagation characteristics in functionally graded plates and some parameters such wave number, thickness ratio, power index and foundation parameters are discussed in detail.

Principles and Considerations of Bender Element Tests (벤더엘리먼트 시험의 원리와 고려사항)

  • Lee Jong-Sub;Lee Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • The shear wave velocity is related with the stiffness of granular skeleton and mass density. The shear stiffness of the granular skeleton remains unaffected by the presence of the fluid. Bender elements are convenient shear wave transducers for instrumenting soil cells due to optimal soil-transducer coupling. This study addresses the principles of the shear wave, the design and implementation of bender elements including electromagnetic coupling prevention, directivity, resonant frequency, detection of first arrival, and near field effects. It is shown that electromagnetic coupling effects can be minimized using parallel-type bender elements. Thus, the in-plane S-wave directivity is quasi-circular. The resonant frequency of bender element installations depends on the geometry of the bender element, the anchor efficiency and the soil stiffness. One of the most cumbersome parts in the bender element test is near field effects, which affect the selection of arrival time. The selection of the first arrival within the near field Is effectively solved by the multiple reflection technique and signal matching technique. Bender elements, which requires several considerations, may be effective tools for the subsurface characterization by using S-wave.

Development of Automatic Shear-wave Source for Downhole Seismic Method (다운홀 탄성파 기법용 전단파 자동 가진원의 개발)

  • Bang, Eun-Seok;Sung, Nak-Hoon;Kim, Jung-Ho;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.27-37
    • /
    • 2007
  • Downhole seismic method is very economic and easy to operate because it uses only one borehole and simple surface source to obtain the shear wave velocity profile of a site. In this study, automatic shear wave source was developed for efficient downhole seismic testing. This source is motor-spring type and easy to control. It can lessen the labor of operator and the working time. Moreover, it can provide better and repetitive signals for data interpretation. By combining developed automatic source with automatic receiver system, PC based data acquisition system, advanced managing program, and semi-automatic downhole performing system were constructed. Through comparison test with manual source, advantages of automatic source were verified. Constructed semi-automatic downhole testing system including automatic shear wave source was applied to the soft soil site. The applicability and reliability were verified and the importance of automating testing system for obtaining reliable result was emphasized.

Quantification of Nerve Viscosity Using Shear Wave Dispersion Imaging in Diabetic Rats: A Novel Technique for Evaluating Diabetic Neuropathy

  • Feifei Liu;Diancheng Li;Yuwei Xin;Fang Liu;Wenxue Li;Jiaan Zhu
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.237-245
    • /
    • 2022
  • Objective: Viscoelasticity is an essential feature of nerves, although little is known about their viscous properties. The discovery of shear wave dispersion (SWD) imaging has presented a new approach for the non-invasive evaluation of tissue viscosity. The present study investigated the feasibility of using SWD imaging to evaluate diabetic neuropathy using the sciatic nerve in a diabetic rat model. Materials and Methods: This study included 11 diabetic rats in the diabetic group and 12 healthy rats in the control group. Bilateral sciatic nerves were evaluated 3 months after treatment with streptozotocin. We measured the nerve cross-sectional area (CSA), nerve stiffness using shear wave elastography (SWE), and nerve viscosity using SWD imaging. The motor nerve conduction velocity (MNCV) was also measured. These four indicators and the histology of the sciatic nerves were then compared between the two groups. The performance of CSA, SWE, and SWD imaging in distinguishing the two groups was assessed using receiver operating characteristic (ROC) analysis. Results: Nerve CSA, stiffness, and viscosity in the diabetic group was significantly higher than those in the control group (all p < 0.05). The results also revealed a significantly lower MNCV in the diabetic group (p = 0.005). Additionally, the density of myelinated fibers was significantly lower in the diabetic group (p = 0.004). The average thickness of the myelin sheath was also lower in the diabetic group (p = 0.012). The area under the ROC curve for distinguishing the diabetic neuropathy group from the control group was 0.876 for SWD imaging, which was significantly greater than 0.677 for CSA (p = 0.030) and 0.705 for SWE (p = 0.035). Conclusion: Sciatic nerve viscosity measured using SWD imaging was significantly higher in diabetic rats. The viscosity measured using SWD imaging performed well in distinguishing the diabetic neuropathy group from the control group. Therefore, SWD imaging may be a promising method for the evaluation of diabetic neuropathy.