• Title/Summary/Keyword: Shear Texture

Search Result 271, Processing Time 0.021 seconds

Computer Simulation of Hemispherical Forming Process Texture-based Work hardening and Anisotropy (집합조직 기초 가공경화와 이방성에 의한 반구 성형공정의 전산 시뮬레이션)

  • Sim, J.K.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.199-202
    • /
    • 2006
  • The hardening and anisotropy based on the crystal plasticity is considered in the numerical simulation of hemispherical sheet forming process to find more realistic simulation results For calculating the yield shear stresses of each crystal, Taylor's model of the crystalline aggregate is employed. The yield stress of crystalline aggregate is computed by averaging the yield stresses of the crystal. The hardening is evaluated by using the Taylor factor and the critical resolved shear stress of the crystal. In addition, by observing the crystallographic texture and slip system, the anisotropy of the sheet is traced during the forming process. The anisotropy and hardening behaviors of the sheet found by the crystal plasticity are described better than those of obtained from the Hill's quadratic criterion based on the continuum plasticity.

  • PDF

Formability of ECAPed Al Alloy Sheet (ECAP 한 알루미늄 판재의 성형성 연구)

  • Akramov, Saidmurod;Kim, In-Soo;Lee, Min-Gu;Park, Byung-Hyun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.88-91
    • /
    • 2006
  • Ultra-fine grained and high hardened Al sheet was obtained by Equal Channel Angular Pressing (ECAP). During this process the microstructure, the hardness and the texture of AA 1050 Al alloy sheet are changed by a severe shear deformation. The plastic strain ratio after the ECAP and subsequent heat-treatment condition was investigated in this study. It was found that the average r-value of the equal channel angular pressed and subsequent heat-treated specimen was 1.7 times higher than that of the initial Al sheet. This could be attributed to the various texture formations through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheets.

  • PDF

Estimation of Sensory Pork Loin Tenderness Using Warner-Bratzler Shear Force and Texture Profile Analysis Measurements

  • Choe, Jee-Hwan;Choi, Mi-Hee;Rhee, Min-Suk;Kim, Byoung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1029-1036
    • /
    • 2016
  • This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other hand, three parameters from texture profile analysis (TPA)-hardness, gumminess, and chewiness-were significantly correlated with all sensory evaluation variables. In particular, from the result of stepwise regression analysis, TPA hardness alone explained over 15% of variation in all sensory evaluation variables, with the exception of perceptible residue. Based on these results, TPA analysis was found to be better than WBS measurement, with the TPA parameter hardness likely to prove particularly useful, in terms of predicting pork loin tenderness as rated by trained panelists. However, sensory evaluation should be conducted to investigate practical pork tenderness perceived by consumer, because both instrumental measurements could explain only a small portion (less than 20%) of the variability in sensory evaluation.

Texture and Microstructure in Aluminum 3003 Sheet During Groove Pressing (Groove Pressing 한 Aluminum 3003 판재의 집합조직 및 미세조직의 변화)

  • Kim H. D.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.176-179
    • /
    • 2001
  • A simple cold pressing procedure which allows shear deformations on sheet metals is proposed by designing dies with grooves and applied to aluminum 3003 sheets. shear deformation led to the formation of preferred orientation along <100>//RD, and the effect of initial tortures on the formation of shear textures was also studied Rectangular shaped dislocation cells formed in the deformed microstructure and boundaries of dislocation cells gradually rounded with the increased plastic strain. Upon subsequent annealing textures inherited deformation textures. Recrystallized grains consisted of a large number of fully recovered subgrains with well defined boundaries which persisted even after annealing at a higher temperature.

  • PDF

Texture of Asymmetrically Rolled AA 1050 Aluminum alloy (비대칭 압연한 AA 1050 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.326-327
    • /
    • 2007
  • A study on the texture and the formability after asymmetric rolled and subsequent heat-treated AA 1050 aluminum alloy sheets have been carried out. The specimens after the asymmetric rolling showed a very fine grain size, a decrease of <100>//ND, and an increase of <111>//ND textures. The change of plastic strain ratios has been investigated and it was found that they were higher than those of the initial Al sheet.

  • PDF

Texture of Frictionally Rolled AA 1050 Aluminum alloy (마찰 압연한 AA 1050 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.328-329
    • /
    • 2007
  • A study on the texture and the formability after frictional rolled and subsequent heat-treated AA 1050 aluminum alloy sheets have been carried out. The specimens after the frictional rolling showed a very fine grain size, a decrease of <100>//ND, and an increase of <111>//ND textures. The change of plastic strain ratios has been investigated and it was found that they were higher than those of the initial Al sheet.

  • PDF

Inhomogeneity of Hot Rolling Texture in Cu/Nb Added Ultra Low Carbon Steels

  • Jiang, Ying-Hua;Park, Young-Koo;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.634-636
    • /
    • 2007
  • The texture and microstructure in Cu/Nb added ultra low carbon steels through the different thickness layer were studied after hot rolling. It was found that the two ultra low carbon steels all show the inhomogeneity of hot rolling texture and the Cu-added ultra low carbon steel was far more inhomogeneous than Nb-added one. In the center layer, the strong ${\alpha}\;fibre,\;{\gamma}\;fibre$ textures and the shear textures including 001<110>, 111<112> were founded. Near the surface, the ${\alpha}\;fibre$ texture and the orientation texture caused by a typical plane-strain deformation condition of bcc metals were observed.

Texture and Formability Development of Non-lubrication Rolled Al Alloy Sheet (무윤활 압연한 알루미늄 합금의 집합조직과 성형성)

  • Akramov, Saidmurod;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Formability and other mechanical properties of sheet metals are strongly dependent on the texture. It was studied to improve the formability of the Al alloy(AA3003) sheets which were rolled under the non-lubrication condition and subsequent heat treated. In the non-lubrication rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios were investigated in this study. Non-lubrication rolled Al sheets showed a fine grain size and after subsequent heat treated specimens showed that the $\beta$-fiber texture component was increased. The plastic strain ratios of the non-lubrication rolled and subsequent heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of $\beta$-fiber texture components through the non-lubrication rolling and subsequent heat treatment in Al sheet.

Anisotropy due to Texture Development in FCC Polycrystals (FCC 다결정재의 집합조직 발전에 따른 이방성의 변화)

  • Kim, Eung-Zu;Lee, Yong-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1516-1523
    • /
    • 1996
  • The present study is concerned with the development of anisotropy and deformation texture in polycrystals. The individual grain in an aggregate is assumed to experience the viscoplastic dedformation with crystallographic slip that unsure uniquenessof the active slip systems and shearing rate onthese systems. Two different methods for updating the grain orientation are examined. Texture development for some deformation modes such as plane strain compression, uniaxial tension and simple shear are found. Changes in anisotropic flow potential due to texture development during large deformation are also given. Anisotropic behavior of polycrystals with defferent textures are examined.

Effect of various cold rolling process on the evolution of texture and recrystallized grain size in AA 5052 sheet (AA 5052 판재의 집합조직 발달과 결정립 크기에 미치는 다양한 냉간압연 공정의 영향)

  • Lee, J.H.;Nah, J.J.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.408-410
    • /
    • 2008
  • The evolution of texture and microstructure during recrystallization was tracked after different cold rolling of aluminum sheets. Texture of the sheet center were differentiated by different strain states due to prior deformation. The evolution of recrystallization texture was studied with the amount of shear applied during cold rolling. The final grain size after recrystallization annealing was varied due to the effective strain during deformation.

  • PDF