• 제목/요약/키워드: Shear Test

검색결과 4,466건 처리시간 0.031초

지오신세틱스 전단거동의 해석학적 고찰 (Interpretational Consideration of Geosynthetics Shear Behaviors)

  • 전한용;김초롱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.293-302
    • /
    • 2010
  • 2 types of geogrids and geotextiles was used to evaluate shear behaviors after installation damage test. Shear behaviors were compared after installation damage test and coefficient of resistance to direct sliding($f_{ds}$) was estimated by theoretical shear analysis. Shear strength of damaged geogrid decreased under high normal stress of 150kPa and shear strength of geotextile decreased with increasing normal stress. It is seen that $f_{ds}$ values after installation damage decreased than before installation damage through comparison calculated $f_{ds}$ by direct theoretical shear analysis. $f_{ds}$ values to be calculated by theoretical shear analysis were changed with before and after installation damage.

  • PDF

프리캐스트 바닥판과 PSC 거더 전단연결재의 수평전단강도 평가 (Evaluation of horizontal shear strength of the shear connectors between precast decks and PSC girders)

  • 현병학;정철헌;심창수;김영진;이한주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.240-243
    • /
    • 2004
  • A new shear connection for the application of precast decks to PSC girders was proposed and push-off tests were conducted to evaluate the horizontal shear strength of the shear connection. Major parameters of the tests were connector type, shank area, vertical load, surface condition and bedding height. Judging from the test results, shear strength of the suggested shear connection was proportional to the shank area and yield strength of the connectors and was in inverse proportion to the bedding height. Shear connection with shear key at the surface showed better performance. An empirical equation for the evaluation of the shear strength of the shear connection without considering bond strength was proposed and it showed good correlation with the test results.

  • PDF

Experimental study on shear capacity of circular concrete filled steel tubes

  • Xiao, Congzhen;Cai, Shaohuai;Chen, Tao;Xu, Chunli
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.437-449
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have recently seen wide use in China, but studies of the shear problem of CFST are inadequate. This paper presents an experimental study on the shear capacity of circular concrete filled steel tube (CCFT) specimens with and without axial compression force. Shear capacity, ductility, and damage modes of CCFTs were investigated and compared. Test results revealed the following: 1) CCFTs with a small shear span ratio may fail in shear in a ductile manner; 2) Several factors including section size, material properties, shear span ratio, axial compression ratio, and confinement index affect the shear capacity of CCFTs. Based on test results and analysis, this paper proposes a design formula for the shear capacity of CCFTs.

슬래브-기둥 접합부의 전단보강상세에 관한 연구 (A Study of Shear Reinforcement for Slab-Column Connection)

  • 백성우;김준서;최현기;최창식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.37-40
    • /
    • 2008
  • The study is an experimental test on full-scale flat plate slab-column interior connection. The punching shear on the flat plate slab-column connection can bring about the reason of the brittle punching shear failure which may result of collapsing the whole structure. From the development of residential flat plate system, the shear reinforcement is developed for preventing the punching shear. For making sure of the punching shear capacity, developed for shear reinforcement in slab-column connection, the structural test is performed. The dimension of the slabs was 2620*2725*180mm with square column (600*800mm). The slabs were tested up to failure monotonic vertical shear forces. The presences of S/S bar and wire mesh substantially increased the punching shear capacity and the ductility of the slab-column connections.

  • PDF

5점 휨하중 시험법을 사용한 구조용 판넬의 굴림전단강도 (Planar (Rolling) Shear Strength of Structural Panels Using 5-point Bending Test)

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권5호
    • /
    • pp.425-436
    • /
    • 2018
  • 본 연구는 ASTM D2718의 5점 휨하중 시험법을 사용하여 OSB(oriented strand board)와 국산합판의 굴림전단성능을 평가하기 위하여 수행되었다. 각 시험용 판넬에 대해 길이방향에 평행한 것과 수직인 시험편을 제작하여 각각 시험하였으며, 파괴양상을 관찰하였다. 시험 결과 굴림전단력은 강축방향에 평행한 경우 $1.32-1.938N/mm^2$, 강축방향에 수직인 경우 $1.46-1.99N/mm^2$ 정도로 나타났으며 방향에 따른 차이는 크게 나타나지 않았다. 국산합판은 길이방향에 평행한 경우는 캐나다산 OSB와, 수직인 경우는 칠레산 OSB와 통계적으로 차이가 나타나지 않았다. 파괴는 OSB에서는 모두 전단에 의한 파괴가 나타났으며, 합판의 경우에는 전단, 접착층의 박리, 휨과 전단에 의한 복합파괴가 관찰되었다.

Perfobond Rib 전단연결재를 사용한 실험체의 전단강도 분석 (Analysis on Shear Force of Specimens Using Perfobond Rib Shear Connector)

  • 최진웅;박병건;김형준;정호성;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.138-147
    • /
    • 2011
  • 본 연구의 목적은 직접전단응력 및 휨 전단응력의 비교분석을 통하여 Perfobond Rib 전단연결재를 사용한 구조물의 하중방향에 따른 전단응력 분석이다. 직접전단응력 분석을 위해서 5개의 변수로 Perfobond Rib 전단연결재 실험체 5개를 제작하고 Push-out Test를 실시하였다. 실험 후 Perfobond Rib 전단연결재의 전단저항 메커니즘을 규명하고, 직접전단응력에 영향을 미치는 주요 인자를 바탕으로 직접전단력을 산출할 수 있는 제안식을 제시하였다. 또한 휨 전단응력의 분석을 위해 강-콘크리트 합성 바닥판 실험체를 제작하고 정적 휨실험을 실시하였다. 정적 휨실험을 바탕으로 휨 거동특성을 분석하고 휨 전단응력을 계산하였다. 직접전단응력과 EN 1994-1-1을 통해 계산된 휨 전단응력을 비교하여 하중방향에 따른 전단저항응력에 대해서 분석을 하였다.

경량콘크리트 슬래브와 철골보의 합성보에서 쉬어 코넥터의 강도에 관한 연구 (A Study on Strength of Shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs)

  • 주기수;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.356-361
    • /
    • 1994
  • From the previous experimental test results, it has shown that shear that shear strength in lightweight concrete beams was about 85% on that in normal concrete beams. It is speculated that shear connectors in composite beams of steel and lightweight concrete associated with the longitudinal shear strength decrease more in strength than those in normal concrete. So this paper, as a study on strength of shear connectors in composite beams of steel and lightweight concrete slabs, has a purpose to compare the strength formula resulted from the push-out test of thirteen solid slab and four deck Plate slab with the established ones, and then to suggest a proper strength formula of the shear connectors. The established strength formula of the shear connectors is prescribed for $P_ps = 0.50A_s . \sqrt{f_C . E_C}$by AISC coed, but from the experimental test results the strength values of the shear connectors in lightweignt concrete slabs shows about 70% on those of the shear connectors in normal concrete slabs by AISC code. Therefore, as a strength formula this paper suggests to multiply the established strength formula by reduction factor$(\varphi=0.7)$.

  • PDF

Shear mechanism and bearing capacity calculation on steel reinforced concrete special-shaped columns

  • Xue, J.Y.;Chen, Z.P.;Zhao, H.T.;Gao, L.;Liu, Z.Q.
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.473-487
    • /
    • 2012
  • An experimental study was performed to investigate the seismic performance of steel reinforced concrete (SRC) special-shaped columns. For this purpose, 17 steel reinforced concrete special-shaped column specimens under low-cyclic reversed load were tested, load process and failure patterns of the specimens with different steel reinforcement were observed. The test results showed that the failure patterns of these columns include shear-diagonal compression failure, shear-bond failure, shear-flexure failure and flexural failure. The failure mechanisms and characteristics of SRC special-shaped columns were also analyzed. For different SRC special-shaped columns, based on the failure characteristics and mechanism observed from the test, formulas for calculating ultimate shear capacity in shear-diagonal compression failure and shear-bond failure under horizontal axis and oblique load were derived. The calculated results were compared with the test results. Both the theoretical analysis and the experimental results showed that, the shear capacity of T, L shaped columns under oblique load are larger than that under horizontal axis load, whereas the shear capacity of +-shaped columns under oblique load are less than that under horizontal axis load.

석탄회 인공경량골재를 사용한 고강도 콘크리트 보의 전단성능 (Shear Performance of High-Strength Reinforced Concrete Beams using Fly-Ash Artificial Lightweight Aggregate)

  • 정수영;윤현도;박완신
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.233-242
    • /
    • 2002
  • This study is to investigate experimentally the shear capacity of high-strength lightweight-aggregate reinforced concrete beams subjected to monotonic loading. Ten beams made of fly-ash artificial lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. The variables in the test program were longitudinal reinforcement ratio; which variabled (between 0.83 and 1.66 percent), shear span-to-depth ratio (a/d=1.5, 2.5 and 3.5), and web reinforcement(0, 0.137, 0.275 and 0.554 percent). Six of the test beams had no web reinforcement and the other six had web reinforcement along the entire length of the beam. Most of beams failed brittly by distinct diagonal shear crack, and have reserved shear strength due to the lack of additional resisting effect by aggregate interlocking action after diagonal cracking. Test results indicate that the ACI Building Code predictions of Eq. (11-3) and (11-5) for lightweight concretes are unconservative for beams with tensile steel ratio of 1.66, a/d ratios greater than 2.5 without web reinforcement. Through a more rational approach to compute the contribution of concrete to the shear capacity, a postcracking shear strength in concrete is observed.

Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete

  • Li, Xiang;Zhou, Xuhong;Liu, Jiepeng;Wang, Xuanding
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.411-422
    • /
    • 2019
  • Six shear-critical square tubed steel reinforced concrete (TSRC) columns using the high-strength concrete ($f_{cu,150}=86.6MPa$) were tested under constant axial and lateral cyclic loads. The height-to-depth ratio of the short column specimens was specified as 2.6, and the axial load ratio and the number of shear studs on the steel shape were considered as two main parameters. The shear failure mode of short square TSRC columns was observed from the test. The steel tube with diagonal stiffener plates provided effective confinement to the concrete core, while welding shear studs on the steel section appeared not significantly enhancing the seismic behavior of short square TRSC columns. Specimens with higher axial load ratio showed higher lateral stiffness and shear strength but worse ductility. A modified ACI design method is proposed to calculate the nominal shear strength, which agrees well with the test database containing ten short square TSRC columns with shear failure mode from this study and other related literature.