• Title/Summary/Keyword: Shear Stiffness

Search Result 1,634, Processing Time 0.022 seconds

Field Elastic Wave and Electrical Resistivity Penetrometer for Evaluation of Elastic Moduli and Void Ratio (탄성계수 및 간극비 평가를 위한 현장 관입형 탄성파 및 전기비저항 프로브)

  • Yoon, Hyung-Koo;Kim, Dong-Hee;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.85-93
    • /
    • 2010
  • The shear stiffness has become an important design parameter to understand the soil behavior. In particular, the elastic moduli and void ratio has been considered as important parameters for the design of the geotechnical structures. The objective of this paper is the development of the penetration type Field Velocity and Resistivity Probe (FVRP) which is able to assess the elastic moduli and void ratio based on the elastic wave velocities and electrical resistivity. The elastic waves including the compressional and shear wave are measured by piezo disk elements and bender elements. And the electrical resistivity is measured by the resistivity probe, which is manufactured and installed at the tip of the FVRP. The penetration tests are carried out in calibration chamber and field. In the laboratory calibration chamber test, after the sand-clay slurry mixtures are prepared and consolidated. The FVRP is progressively penetrated and the data are measured at each 1 cm. The field experiment is also carried out in the southern part of Korea Peninsular. Data gathering is performed in the depth of 6~20 m at each 10 cm. The elastic moduli and void ratio are estimated based on the analytical and empirical solutions by using the elastic wave velocities and electrical resistivity measured in the chamber and field. The void ratios based on the elastic wave velocities and the electrical resistivity are similar to the volume based void ratio. This study suggests that the FVRP, which evaluates the elastic wave velocities and the electrical resistivity, may be a useful instrument for assessing the elastic moduli and void ratio in soft soils.

Evaluation of Shear Deformation Energy and Fatigue Performance of Single-layer and Multi-layer Metal Bellows (단층 및 다층 금속 벨로우즈의 전단 변형 에너지 및 피로성능 평가)

  • Kyeong-Seok Lee;Jin-Seok Yu;Young-Soo Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Seismic safety of expansion joints for piping systems has been underscored by water pipe ruptures and leaks resulting from the Gyeongju and Pohang earthquakes. Metal bellows in piping systems are applied to prevent damage from earthquakes and road subsidence in soft ground. Designed with a series of corrugated segments called convolutions, metal bellows exhibit flexibility to accommodate displacements. Several studies have examined variations in convolution shapes and layers based on the intended performance to be evaluated. Nonetheless, the research on the seismic performance of complex bellows having multiple corrugation heights is limited. In this study, monotonic loading tests, cyclic loading tests, and fatigue tests were conducted to evaluate the shear performance in seismic conditions, of metal bellows with variable convolution heights. Single- and triple-layer bellows were considered for the experimentation. The results reveal that triple-layer bellows exhibit larger maximum deformation and fatigue life than single-layer bellows. However, the high stiffness of triple-layer bellows in resisting internal pressure poses certain disadvantages. The convolutions are less flexible at lower displacements and experience leakage at a rate related to the variable height of the convolutions in certain conditions. At lower deformation rates, the fatigue life is rated higher as the number of layers increase. It converges to a similar fatigue life at higher deformation rates.

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.

Quantification of the Elastic Property of Normal Thigh Muscles Using MR Elastography: Our Initial Experience (자기 공명 탄성 검사를 이용한 대퇴 근육의 탄성도의 정량화: 초기 경험)

  • Junghoon Kim;Jeong Ah Ryu;Juhan Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1556-1564
    • /
    • 2021
  • Purpose This study aimed to apply MR elastography (MRE) to achieve in vivo evaluation of the elastic properties of thigh muscles and validate the feasibility of quantifying the elasticity of normal thigh muscles using MRE. Materials and Methods This prospective study included 10 volunteer subjects [mean age, 32.5 years, (range, 23-45 years)] who reported normal activities of daily living and underwent both T2-weighted axial images and MRE of thigh muscles on the same day. A sequence with a motion-encoding gradient was used in the MRE to map the propagating shear waves in the muscle. Elastic properties were quantified as the shear modulus of the following four thigh muscles at rest; the vastus medialis, vastus lateralis, adductor magnus, and biceps femoris. Results The mean shear modulus was 0.98 ± 0.32 kPa and 1.00 ± 0.33 kPa for the vastus medialis, 1.10 ± 0.46 kPa and 1.07 ± 0.43 kPa for the vastus lateralis, 0.91 ± 0.41 kPa and 0.93 ± 0.47 kPa for the adductor magnus, and 0.99 ± 0.37 kPa and 0.94 ± 0.32 kPa for the biceps femoris, with reader 1 and 2, respectively. No significant difference was observed in the shear modulus based on sex (p < 0.05). Aging consistently showed a statistically significant negative correlation (p < 0.05) with the shear modulus of the thigh muscles, except for the vastus medialis (p = 0.194 for reader 1 and p = 0.355 for reader 2). Conclusion MRE is a quantitative technique used to measure the elastic properties of individual muscles with excellent inter-observer agreement. Age was consistently significantly negatively correlated with the shear stiffness of muscles, except for the vastus medialis.

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

Monotonic Loading Test for CFT Square Column-to-Beam Partially Restrained Composite Connection (CFT 각형 기둥-보 합성 반강접 접합부의 단조가력 실험)

  • Choi, Sung Mo;Park, Su Hee;Park, Young Wook;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.325-335
    • /
    • 2005
  • This study tackles the development of an improved detail of partially restrained CFT square column-to-beam connection and the evaluation of its mechanical behavior under monotonic loading. The connection is designed to strengthen shearing capacity at the bottom of the connection due to the ultimate behavior of PR-CC by its detail of the bottom connection and simplify the fabrication process. The suggested connection is the welded bottom beam flange connection(M-2) and is compared with the existing PR-CC of bolted seat angle connection(M-1). Two specimens were fabricated in actual size and tested under monotonic loading. Based on the test results, the welded bottom beam flange connection exhibited about 85% of the stiffness of steel beam. It was similar to the bolted seat angle connection and behaved as PR-CC. The specimen of the supposed connection type failed at the shear connection of web but was similar to the bolted seat angle connection until the failure. It obtained sufficient stiffness and capacity through the reinforcingsteel and the capacity and deformational ability equivalent to the full-plastic moment through the anchor inside the steel tube at the web connection. So, it can be said that the suggested connection exhibits sufficient ductile behavior.

Moment Resistance Performance Evaluation of Larch Glulam Joints using GFRP-reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 접합부의 모멘트저항 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • Instead of metal connector generally used on the structural glued laminated timber rahmen joints, the GFRP reinforced laminated plates combining veneer and GFRP (Glass Fiber Reinforced Plastic) and bonded type GFRP rod were used as the connectors. As a result of moment resistance performance evaluation on the joint part applied with these connectors, the yield moment of specimen using the GFRP reinforced laminated plates and GFRP rod pin was measured 4 % lower in comparison to the specimen (Type-1) using the metal connectors, but the initial rotational stiffness was measured 29% higher. Also, the yield moment and rotational stiffness of the specimen using the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin showed were measured 11% and 56% higher in comparison to the Type-1 specimen, showing the best performance. It was also confirmed through the failure shape and perfect elasto-plasticity analysis that it showed ductility behavior, not brittle fracture, from the shear resisting force by the pin and the bonding strength increased and the unification of member was carried out. On the other hand, in case of the specimen bonded with GFRP rod, it was impossible to measure the bonding performance or it was measured very low due to poor bonding.

Behavior of Non-seismic Detailed Low-Rise R/C Exterior Beam-to-Column Joints Subjected to Cyclic Loading (반복 하중을 받는 비내진 저층 RC 구조물의 외부 기둥-보 접합부의 거동)

  • Sur, Man-Sik;Chang, Chun-Ho;Kim, Young-Moon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Seismic design code has been performed since 1988 in Korea, so it has not been applied to low-rise reinforced concrete buildings which had been built before 1988. Those building have been designed only for gravity loads based on non-seismic code, Therefore, even minor earthquake occurred, those buildings might have serious damages. In this paper, to investigate the behavior of low-rise reinforced concrete moment resisting frame which had been built in according to the building code of Korea that had been published before 1988, two type of 1/2 scaled exterior beam-column subassemblies which have non-seismic detailing based on the building code of Korea were constructed and tested with reversed cycling loading under the displacement control method. The special features of joint with non-seismic detailing is that there is no transverse reinforcement in the joint. In tests, cracks pattern, strength degradation, loss of stiffness, energy dissipation and the slippage of beam and column bars were investigated. Cracks did not occurred in the joint even seismic loading of 0.12g which is considered as peak ground acceleration in Korea was applied. And increasing seismic loading above 0.12g shear crack happened in the joint which have not transverse beam.

Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building (철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소)

  • Choun Young-Sun;Lee Hong-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.93-103
    • /
    • 2006
  • It is absolutely essential that safety assessment of the containment buildings during service life because containment buildings are last barrier to protect radioactive substance due to the accidents. Therefore, this study describes an enhanced degenerated shell finite element(FE) which has been developed for nonlinear FE analysis of reinforced concrete(RC) containment buildings with elasto-plastic material model. For the purpose of the material nonlinear analysis, Drucker-Prager failure criteria is adapted in compression region and material parameters which determine the shape of the failure envelop are derived from biaxial stress tests. Reissner-Mindlin(RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method. Finally, the performance of the present shell element to analysis RC containment buildings is tested and demonstrated with several numerical examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Evaluation of the Stability of Ipseok-dae Columnar Joints in Mudeungsan National Park Using 3DEC (3DEC을 이용한 무등산국립공원 입석대 주상절리대의 안정성 평가)

  • Noh, Jeongdu;Kang, Seong Sueng
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2022
  • Numerical analysis performed to predict the behavior of Ipseok-dae columnar joints in Mudeungsan National Park to understand their stability and movement. The numerical analysis technique, 3DEC, is based on the discrete element method that can analysis discontinuities. The analysis used data for material properties derived from laboratory tests, which found that average density was 2.68 kN/m3, average normal stiffness was 3.15 GPa/m, average shear stiffness was 1.00 GPa/m, average cohesion was 0.51 MPa, and the average friction angle was 33°. The Ipseok-dae columnar joints were modeled on the basis of the field survey data for 15 joints located between the observation platform and the hiking trail. The numerical analysis assessed the behavior of each columnar joint by interpreting the displacement of the edges of its upper and lower surfaces. The greatest maximum displacement was found in columnar joint No. 6, and the greatest minimum displacement was found in joint No. 11. Analyzing the movements of five discontinuities in joint No. 11 indicated that the maximum displacement occurred at the 2nd level. The other levels were ordered 5th, 4th, 1st, and 3rd in terms of subsequent greatest displacements. Considering the total displacement in the 15 studied joints, the Ipseok-dae columnar joints are judged to be stable. However, considering the cultural and historical value of Mudeungsan National Park, it is regarded that the currents slope stability should be maintained by monitoring the individual rock blocks of the joints.