DOI QR코드

DOI QR Code

Quantification of the Elastic Property of Normal Thigh Muscles Using MR Elastography: Our Initial Experience

자기 공명 탄성 검사를 이용한 대퇴 근육의 탄성도의 정량화: 초기 경험

  • Junghoon Kim (Department of Radiology, Hanyang University College of Medicine, Guri Hospital) ;
  • Jeong Ah Ryu (Department of Radiology, Hanyang University College of Medicine, Guri Hospital) ;
  • Juhan Lee (Department of Radiology, Hanyang University College of Medicine, Guri Hospital)
  • 김정훈 (한양대학교 의과대학 구리병원 영상의학과) ;
  • 류정아 (한양대학교 의과대학 구리병원 영상의학과) ;
  • 이주한 (한양대학교 의과대학 구리병원 영상의학과)
  • Received : 2020.07.17
  • Accepted : 2021.04.02
  • Published : 2021.11.01

Abstract

Purpose This study aimed to apply MR elastography (MRE) to achieve in vivo evaluation of the elastic properties of thigh muscles and validate the feasibility of quantifying the elasticity of normal thigh muscles using MRE. Materials and Methods This prospective study included 10 volunteer subjects [mean age, 32.5 years, (range, 23-45 years)] who reported normal activities of daily living and underwent both T2-weighted axial images and MRE of thigh muscles on the same day. A sequence with a motion-encoding gradient was used in the MRE to map the propagating shear waves in the muscle. Elastic properties were quantified as the shear modulus of the following four thigh muscles at rest; the vastus medialis, vastus lateralis, adductor magnus, and biceps femoris. Results The mean shear modulus was 0.98 ± 0.32 kPa and 1.00 ± 0.33 kPa for the vastus medialis, 1.10 ± 0.46 kPa and 1.07 ± 0.43 kPa for the vastus lateralis, 0.91 ± 0.41 kPa and 0.93 ± 0.47 kPa for the adductor magnus, and 0.99 ± 0.37 kPa and 0.94 ± 0.32 kPa for the biceps femoris, with reader 1 and 2, respectively. No significant difference was observed in the shear modulus based on sex (p < 0.05). Aging consistently showed a statistically significant negative correlation (p < 0.05) with the shear modulus of the thigh muscles, except for the vastus medialis (p = 0.194 for reader 1 and p = 0.355 for reader 2). Conclusion MRE is a quantitative technique used to measure the elastic properties of individual muscles with excellent inter-observer agreement. Age was consistently significantly negatively correlated with the shear stiffness of muscles, except for the vastus medialis.

목적 정상 대퇴 근육의 탄성도를 정량적으로 측정함에 있어 자기 공명 탄성 검사의 실현 가능성을 확인하고 정상 대퇴 근육의 탄성도를 측정한다. 대상과 방법 이 전향적 연구는 일상적인 보행에 지장이 없는 자원자를 대상으로 대퇴부의 T2 강조 축상 영상과 대퇴 근육의 자기 공명 탄성 검사를 시행하였고 최종적으로 10명의 피실험자가 포함되었다[평균 연령, 32.5세, (범위, 23~45세)]. 탄성 특성은 휴식 상태에서 각 대퇴 근육에서의 전단 탄성 계수를 정량적으로 다음 4개의 대퇴 근육에 대해 측정하였다; 내측넓은근, 외측넓은근, 대내전근, 대퇴이두근. 결과 대퇴 근육의 평균 전단 탄성 계수는 각각 두 명의 판독자에서 내측넓은근은 0.98 ± 0.32 kPa, 1.00 ± 0.33 kPa, 외측넓은근은 1.10 ± 0.46 kPa, 1.07 ± 0.43 kPa, 대내전근은 0.91 ± 0.41 kPa, 0.93 ± 0.47 kPa, 대퇴이두근은 0.99 ± 0.37 kPa, 0.94 ± 0.32 kPa으로 측정되었다. 성별에 따른 전단 탄성 계수의 차이는 유의미하지 않게 나타났다(p < 0.05). 내측넓은근(판독자 1; p = 0.194; 판독자 2; p = 0.355)을 제외한 나머지 대퇴 근육에서 연령은 각 근육의 전단 탄성 계수와 유의미하게 일관된 음의 상관관계를 보였다. 결론 자기 공명 탄성 검사는 개별적인 근육의 탄성 특성을 정량적으로 측정할 수 있는 유용한 검사이다. 내측넓은근을 제외한 대퇴 근육에서 나이는 근육의 전단 탄성계수와 통계학적으로 유의미한 일관된 음의 상관관계를 보였다.

Keywords

Acknowledgement

We are very grateful to Jinwoo Hwang, Clinical Scientist, Philips Healthcare, Seoul, Korea and Seung Tae Woo, Radiology Division, Bayer Healthcare, Seoul, Korea for theoretical, technical assistance.

References

  1. Ito D, Numano T, Mizuhara K, Takamoto K, Onishi T, Nishijo H. A new technique for MR elastography of the supraspinatus muscle: a gradient-echo type multi-echo sequence. Magn Reson Imaging 2016;34:1181-1188 
  2. Mariappan YK, Glaser KJ, Ehman RL. Magnetic resonance elastography: a review. Clin Anat 2010;23:497-511 
  3. Glaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments. J Magn Reson Imaging 2012;36:757-774 
  4. Sarvazyan AP, Skovoroda AR, Emelianov SY, Fowlkes JB, Pipe JG, Adler RS, et al. Biophysical bases of elasticity imaging. In Jones JP, ed. Acoustical imaging. vol 21. Boston, MA: Springer 1995:223-240 
  5. Uffmann K, Maderwald S, Ajaj W, Galban CG, Mateiescu S, Quick HH, et al. In vivo elasticity measurements of extremity skeletal muscle with MR elastography. NMR Biomed 2004;17:181-190 
  6. Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastography and MR elastography for assessing liver fibrosis: part 1, principles and techniques. AJR Am J Roentgenol 2015;205:22-32 
  7. Kennedy P, Macgregor LJ, Barnhill E, Johnson CL, Perrins M, Hunter A, et al. MR elastography measurement of the effect of passive warmup prior to eccentric exercise on thigh muscle mechanical properties. J Magn Reson Imaging 2017;46:1115-1127 
  8. Bensamoun SF, Ringleb SI, Littrell L, Chen Q, Brennan M, Ehman RL, et al. Determination of thigh muscle stiffness using magnetic resonance elastography. J Magn Reson Imaging 2006;23:242-247 
  9. Hong SH, Hong SJ, Yoon JS, Oh CH, Cha JG, Kim HK, et al. Magnetic resonance elastography (MRE) for measurement of muscle stiffness of the shoulder: feasibility with a 3T MRI system. Acta Radiol 2016;57:1099-1106 
  10. Ito D, Numano T, Takamoto K, Ueki T, Habe T, Igarashi K, et al. Simultaneous acquisition of magnetic resonance elastography of the supraspinatus and the trapezius muscles. Magn Reson Imaging 2019;57:95-102 
  11. Blanpied P, Smidt GL. The difference in stiffness of the active plantarflexors between young and elderly human females. J Gerontol 1993;48:M58-M63 
  12. Eby SF, Cloud BA, Brandenburg JE, Giambini H, Song P, Chen S, et al. Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood. Clin Biomech (Bristol, Avon) 2015;30:22-27 
  13. Narici MV, Maffulli N, Maganaris CN. Ageing of human muscles and tendons. Disabil Rehabil 2008;30:1548-1554 
  14. Akagi R, Yamashita Y, Ueyasu Y. Age-related differences in muscle shear moduli in the lower extremity. Ultrasound Med Biol 2015;41:2906-2912 
  15. Wang CZ, Li TJ, Zheng YP. Shear modulus estimation on vastus intermedius of elderly and young females over the entire range of isometric contraction. PLoS One 2014;9:e101769 
  16. Chleboun GS, Howell JN, Conatser RR, Giesey JJ. The relationship between elbow flexor volume and angular stiffness at the elbow. Clin Biomech (Bristol, Avon) 1997;12:383-392 
  17. Klatt D, Papazoglou S, Braun J, Sack I. Viscoelasticity-based MR elastography of skeletal muscle. Phys Med Biol 2010;55:6445-6459