• Title/Summary/Keyword: Shear Slip

Search Result 484, Processing Time 0.024 seconds

Structural characteristics of the Yecheon Shear Zone in the Pukhumyeon-Pyeongeunmyeon area, Gyeongsangbukdo, Korea (경상북도 북후면-평은면 지역에 발달된 예천전단대의 구조적 특성)

Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete (콘크리트의 전단마찰 내력에 대한 횡보강근 및 압축응력의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2016
  • This study examined the effect of transverse reinforcement and compressive stress on the shear friction performance at the shear interface intersecting two structural elements with various concrete types. From the prepared 12 push-off test specimens, various characteristics at the interface were measured as follows: crack propagation, shear load-relative slip relationship, initial shear cracking strength, ultimate shear friction strength, and shear transfer capacity of transverse reinforcement. The configuration of transverse reinforcement and compressive strength of concrete insignificantly influenced the amount of relative slippage at the shear friction plane. With the increase of applied compressive stress, the shear friction capacity of concrete tended to increase proportionally, whereas the shear transfer capacity of transverse reinforcement decreased, which was insignificantly affected by the configuration type of transverse reinforcement. The empirical equations of AASHTO-LRFD and Mattock underestimate the shear friction strength of concrete, whereas Hwang and Yang model provides better reliability, indicating that the mean and standard deviation of the ratios between measured shear strengths and predictions are 1.02 and 0.23, respectively.

Distribution of shear force in perforated shear connectors

  • Wei, Xing;Shariati, M.;Zandi, Y.;Pei, Shiling;Jin, Zhibin;Gharachurlu, S.;Abdullahi, M.M.;Tahir, M.M.;Khorami, M.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.389-399
    • /
    • 2018
  • A perforated shear connector group is commonly used to transfer shear in steel-concrete composite structures when the traditional shear stud connection is not strong enough. The multi-hole perforated shear connector demonstrates a more complicated behavior than the single connector. The internal force distribution in a specific multi-hole perforated shear connector group has not been thoroughly studied. This study focuses on the load-carrying capacity and shear force distribution of multi-hole perforated shear connectors in steel-concrete composite structures. ANSYS is used to develop a three-dimensional finite element model to simulate the behavior of multi-hole perforated connectors. Material and geometric nonlinearities are considered in the model to identify the failure modes, ultimate strength, and load-slip behavior of the connection. A three-layer model is introduced and a closed-form solution for the shear force distribution is developed to facilitate design calculations. The shear force distribution curve of the multi-hole shear connector is catenary, and the efficiency coefficient must be considered in different limit states.

On the Properties and Intersection Feature of the Ductile Shear Zone (Chonju shear zone) near Yongkwang-Eub (영광(靈光) 부근(附近) 연성전단대(延性剪斷帶)(전주전단대(全州剪斷帶))의 성질(性質)과 교차양상(交叉樣相)에 관(關)하여)

  • Jeon, Kyeong Seok;Chang, Tae Woo;Lee, Byung Joo
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 1991
  • Ductile shear zones developed in Jurassic granites in the Yonggwang area show NE trend at the eastern part and nearly EW trend at the western part, respectively. Judged from shear sense indicators, they have resulted from dextral strike-slip movement. The intersection of both trends is thought to be due to the truncation and offset of NE shear zone Chonju Shear zone by the brittle Yonggwang fault which runs in near EW direction with sinistral movement sense. The simple shear deformation was predominate through the deformation in this ductile shear zone. Based on this deformation mechanism, the shear strain (${\gamma}$) estimated in domain 1 increases from 0.14 at the shear zone margin to 9.41 toward the center of shear zone. Total displacement obtained only from this measured section(JK 59 to JK14) appecars to be 1434.5 meters. The sequential development of microstructures can be divided into three stages; weakly-foliated, well-foliated and banded-foliated stages. In the weakly-foliated stage dislocation glide mechanism might be predominant. In the well-foliated stage grain boundary migration and progressive misorientation of subgrains was remarkable during dynamic recovery and recrystallization. In the banded-foliated stage grain boundary sliding and microfracturing mechanisms accompanied with crushing and cracking were marked. According to strain analysis from quartzites of the metasedimentary rocks, strain intensity (${\gamma}$) of the samples within the ductile shear zone ranges from 2.7 to 5.7, while that of the samples out of the ductile shear zone appears to be about 1.7.

  • PDF

Shear Capacity of Corrugated rib Shear Connector (파형전단연결재의 전단저항 성능)

  • Ahn, Jin-Hee;Choi, Kyu-Tae;Kim, Sung-Hyun;Kim, Sang-Hyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.375-381
    • /
    • 2008
  • This paper deals with the shear capacity of corrugated rib as the shear connector in composite structures. Corrugated rib is modified as perfobond rib shear connector type to evaluate the shear capacity. A total 12 push-out specimens with stud, perfobond rib, and corrugated rib connector were fabricated. Then, the influences of hole-crossing bars, concrete dowel, depth of corrugated panel and height of rib on the shear capacity were evaluated experimentally. As the results of these tests, the failure mechanisms of corrugated rib and perfobond rib specimens were associated with the bearing failure of the concrete slabs, but the failure of weld zone did not occur. The shear capacity of corrugated rib specimens improved as high to 96% compared to the perfobond rib shear connectors. Also, the hole-crossing bars were effective on the improvement of concrete dowel action, and consequently, shear capacity increased by 48%. It was also proven that the increment of the depth of corrugated panel and the height of rib increased the concrete bearing resistance, therefore increasing the shear capacity.

Evolution of Neogene Sedimentary Basins in the Eastern Continental Margin of Korea (한반도 동해 대륙주변부 신제삼기 퇴적분지의 진화)

  • Yoon Suk Hoon;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.15-27
    • /
    • 1993
  • Seismic reflection profiles from the eastern continental margin of Korea delineate three major Neogene sedimentary basins perched on the shelf and slope regions: Pohang-Youngduk, Mukho and Hupo basins. The stratigraphic and structural analyses demonstrate that the formation and filling of these basins were intimately controlled by two phases of regional tectonism: transtensional and subsequent contractional deformations. In the Oligocene to Early Miocene, back-arc opening of the East Sea induced extensional shear deformation with dextral strike-slip movement along right-stepping Hupo and Yangsan faults. During the transtensional deformation, the Pohang-Youngduk Basin was formed by pull-apart opening between two strike-slip faults; in the northern part, block faulting caused to form the Mukho Basin between basement highs. As a result of the back-arc closure, the stress field was inverted into compression at the end of the Middle Miocene. Under the compressive regime, two episodes (Late Miocene and Early Pliocene) of regional deformation led to the destruction and partial uplift of the basin-filling sequences. In particular, during the second episode of compressive deformation, the Hupo fault was reactivated with an oblique-slip sense, which resulted in an opening of the Hupo Basin as a half-graben on the downthrown fault block.

  • PDF

Effect of Extraction Time on the Rheological Properties of Sericin Solutions and Gels

  • Yoo, Young Jin;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.1
    • /
    • pp.180-184
    • /
    • 2013
  • Recently, silk sericin has attracted the attention of researchers owing to its useful properties as a biomaterial including 1) good wound healing and cell activities, 2) fast gelation character, and 3) high water retention property. In the present study, silk sericin was prepared using different extraction times in hot water and the effect of extraction time on the rheological properties of sericin solutions and gels was examined. It was found that the production yield of sericin increased with extraction time. The shear viscosity of sericin solutions and gels decreased with increasing extraction time due to a decrease in sericin molecular weight. When the sericin solution transformed to a gel, the viscosity increased and the shear thinning behavior was more evident. In addition, the shear stress measurements indicated that the slip between the sericin samples and the measuring plate of the rheometer was increased by the gelation of sericin. The compression strength of sericin gel could be increased remarkably (by more than 100 fold) by preparation using the freezing and thawing method.

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

The Mechanism of Shear Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 전단 저항 기구와 변형 능력)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.50-53
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Analytical assessment of RC beam-column connections strengthened with CFRP sheets

  • Le, Trung-Kien;Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.470-473
    • /
    • 2006
  • Past experiences from recent earthquakes indicate that shear failures of beam-column connections were one of the main reasons causing significant damages and collapses of RC structures subjected to earthquake loadings. Many researchers and engineers have conducted to propose an effective way to improve the joint shear strength of RC connections. This paper presents an analytical model for the RC exterior beam-column joints strengthened with CFRP sheets. In the analytical model, the effect of shear behavior of the RC beam-column joint, bond slip of the beam longitudinal reinforcements and CFRP sheets were considered and incorporated into the non-linear structural analysis program. Final analytical results were compared with those from the experiment of eight exterior RC beam-column specimens. The analytical results showed that the developed connection model is very useful to investigate the hysteretic joint behavior and overall load-displacement response of the RC beam-column connections strengthened with CFRP sheets.

  • PDF