• Title/Summary/Keyword: Shear Fracture Behavior

Search Result 272, Processing Time 0.028 seconds

Evaluation of Shear Strength of a Miniature Lead-free Single Solder Ball Joint (초소형 무연 단일 솔더볼 연결부의 전단강도 평가)

  • Joo, Se-Min;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.14-21
    • /
    • 2010
  • A miniature single solder ball joint is designed to mimic the actual solder joints used in the micro-electric industries. Shear tests were conducted to evaluate the mechanical behavior of miniature single solder joints at intermediate strain rates from $0.019\;s^{-1}$ to $2.16\;s^{-1}$ at room temperature. The shear fracture strength of the present solder ball joints generally increased with increasing shear strain rate, ranging from 32 to 51MPa. This behavior is affected by the sensitivity of bulk solder strength to strain rate. Shear fracture mode changed from brittle to partial ductile (failure inside the bulk solder) with an increase of shear speed. The unloading shear fracture toughness is generally consistent with the measure of the amount of bulk solder on the fractured surface.

Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens

  • Haeri, Hadi
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.605-623
    • /
    • 2015
  • A coupled experimental and numerical study of shear fracture in the edge-notched beam specimens of quasi-brittle materials (concrete-like materials) are carried out using four point bending flexural tests. The crack initiation, propagation and breaking process of beam specimens are experimentally studied by producing the double inclined edge notches with different ligament angles in beams under four point bending. The effects of ligament angles on the shear fracturing path in the bridge areas of the double edge-notched beam specimens are studied. Moreover, the influence of the inclined edge notches on the shear-fracture behavior of double edge-notched beam specimens which represents a practical crack orientation is investigated. The same specimens are numerically simulated by an indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the performed experimental results proving the accuracy and validity of the proposed study.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

A Study of the Influence of Roughness on fracture Shear Behaviour and Permeability (거칠기가 절리의 전단거동 및 투수성에 미치는 영향에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.312-320
    • /
    • 2002
  • It is well-known that when single rock fractures undergo shear displacement, they are influenced by the boundary conditions and fracture roughness. In this case, aperture geometry will change by means of dilation due to the shear displacement. As fractures become the flow paths, fluid flow through rock fractures is affected by the void geometry. In this study, therefore, the influence of roughness on shear behavior of fractures has been investigated, and the resulting hydraulic behavior has been analyzed. In order for this study, a statistical method has been used to generate rough fractures, and they have been adopted into new conceptual models fur fracture shearing and flow calculations. The main contributions of this study are as follows: firstly, fracture shear behavior becomes less brittle with decreasing fracture roughness and increasing normal stress. Then, the characteristics of aperture distribution becomes those of roughness of fractures indicating its hydraulic significance. Finally, it is observed that with decreasing fracture roughness the breakdown of channel flow occurs more slowly.

A Study on Shear Fracture Behavior of Metal in Micro Hole Punching Process (금속 소재의 미세 홀 펀칭 시 전단 파괴 거동 연구)

  • 유준환;임성한;주병윤;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.314-319
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, strain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu$m, 25 $\mu$m micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with those of macro holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover. burnish zone, fracture zone and burr, and it shows similar fracture behavior in shear band. But by high strain rate (10$^2$∼10$^3$s$^{-1}$ ) condition unlike that of macro hole fabrication and by the increment of relative grain size in the direction of the workpiece thickness, fracture zone is not observed.

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.

Fracture Behavior of Concrete Anchorage Zone of Anchor System subjected to Shear Load (전단하중을 받는 앵커시스템 정착부 콘크리트의 파괴 거동)

  • 손지웅;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.265-270
    • /
    • 2002
  • In this paper, structural behaviors of anchor systems subjected to shear loads are analyzed by using fracture analysis and experiments. Two dimensional finite element analyses of concrete anchor systems to predict breakout failure of concrete through progressive fracture are carried out by utilizing the so-called embedded crack model. Three dimensional finite element analyses are also carried out to investigate the fracture behavior of anchor systems having different effective lengths, edge distances, spacings between anchors, and direction of loads. Results of analyses are compared with both experimental results and design values of ACI code on anchor, and then applicability of finite element method for predicting fracture behavior of concrete anchor systems is verified.

  • PDF

A Study on Fracture Behavior in Shear Band during Micro Hole Punching Process (미세 홀 펀칭시 전단 파괴 거동 연구)

  • 유준환;임성한;주병윤;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.230-235
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, stain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu\textrm{m}$, 25 $\mu\textrm{m}$ micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with man holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover, burnish zone, fracture zone and it shows similar fracture behavior in shear band, but? by high strain rate (10$^2$∼ 10$^3$s$\^$-1/) unlike macro hole fabrication and increment of relative grain size several different results are shown.

  • PDF

Block Shear Behavior of Cold-Formed Duplex Stainless Steel (STS329FLD) Welded Connection with Base Metal Fracture (냉간성형 듀플렉스계 스테인리스강(STS329FLD) 용접접합부 모재 블록전단파단 거동)

  • Hwang, BoKyung;Kim, TaeSoo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.157-165
    • /
    • 2019
  • Recently, lean duplex stainless steel, STS329FLD with less nickel (reduced to 0.5~1.5%) has been developed as a substitute of austenitic stainless steel (8%~10.5% nickel in STS304) and included in Korean standards (KS). This paper investigates the block shear behavior of cold-formed duplex stainless steel (STS329FLD, nominal plate thickness of 1.5mm) fillet-welded connection with base metal fracture. Main variables are weld lengths in the longitudinal and the transverse directions of applied force ranged from 20mm to 50mm. As a result, specimens failed by typical block shear facture (the combination of gross section tensile fracture and shear fracture or shear yielding) and ultimate strength of the specimens got higher with the increase of weld length. Block shear fracture strengths predicted by current design specifications (KBC2016/AISC2016 and EC3) and existing proposed equations for welded connections by Topkaya, Oosterhof & Driver and Lee et al. were compared with test strengths. KBC2016/AISC2016 and EC3 design specifications underestimated block shear strength of STS329FLD welded connections by on average 24%, 29%, respectively and Oosterhof & Driver, Topkaya and Lee et al's equations overestimated the ultimate strength of the welded connection by the range of 3% to 44%.

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.