• 제목/요약/키워드: Shear Cutting

검색결과 193건 처리시간 0.033초

정면밀링에서 공구경사각에 따른 비절삭저항 변화 (Variation of Specific Cutting Pressure with Different Tool Rake Angles in Face Milling)

  • 류시형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.63-68
    • /
    • 1996
  • In this study, the effect of tool rake angles and the change of cutting conditions on specific cutting pressure in face milling is investigated. The cutting force in face milling is predicted from the double cutting edge model in 3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the pressented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential and redial forces without the knowledge of friction angle and shear angle. Also, the relation between specific cutting pressure and cutting cindition including feedrate, cutting velocity and depth of cut is studied.

  • PDF

밀링 작업에서 순간 전단면에 기초한 절삭력 모델에 관한 연구 (A Study on the Instantaneous Shear Plane Based Cutting Force Model for End Milling)

  • 홍민성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.225-260
    • /
    • 2002
  • The purpose of this paper is to further extend the theoretical understanding of the dynamic end milling process and to derive a computational model to predict the milling force components. A comparative assessment of different cutting force models is performed to demonstrate that the instantaneous shear plane based formulation is physically sound and offers the best agreement with experimental results. The procedure for the calculation of the model parameters used in the cutting force model, based on experimental data, has been presented. The validity of the proposed computational model has been experimentally verified through a series of cutting tests.

  • PDF

마찰을 고려한 플라스틱 시트의 절단특성에 관한 연구 (A Study on the Cutting characteristics of a plastic sheet including Friction)

  • 한주현;김도현;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.245-248
    • /
    • 2004
  • The press cutter is productive equipment that practically manufactures materials such as fabrics, papers, films, leathers, rubbers etc. into the desired shapes using cutting method. Plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event. The cutting mechanism is complicated and involves plastic flow of plate in the vicinity of the tip, friction between wedge and plate, deformation of plate. In this paper, we studied the effect of friction between cutter and plastic sheet for producing precise and superior products. The press cutter is analyzed numerically using MARC finite element program according to the variation of friction coefficients. The FEM results showed that normal stress, equivalent cauchy stress, normal total strain, equivalent total strain are good when friction coefficient is 0.0 and shear stress, shear total strain are good when friction coefficient is 0.8.

  • PDF

Clay가공에 있어서 Burr 생성기구에 관한 연구 (A Study on the Bburr Formation Mechanism in Clay Machining)

  • 양균의;고성림
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.73-84
    • /
    • 1990
  • A burr has been defined as an undesirable projection of material formed as the result of plastic flow from a cutting or shearing operation. It is Unavoidable in all kinds of machining operation. This paper describe the burr formation mechanism which is based on the behavior of workpiece material during orthogonal machining of the clay on the milling machine. Specially in this report the rollover burr is dealt as a specific case of the chip formation in the final stage of cutting. The negative shear angle is introduced as an important features of burr formation. It is found that the burr formation process is divided into three stage-initiation, development of negative shearing, and formation of the burr with appropriate assumptions. Using above the burr formation mechanism, the size of burr can be estimated by cutting conditions.

  • PDF

Determination of stress state in formation zone by central slip-line field chip

  • Toropov Andrey;Ko Sung Lim
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.24-28
    • /
    • 2005
  • Stress state of chip formation zone is one of the main problems in metal cutting mechanics. In two-dimensional case this process is usually considered as consistent shears of work material along one of several shear surfaces, separating chip from workpiece. These shear planes are assumed to be trajectories of maximum shear stress forming corresponding slip-line field. This paper suggests a new approach to the constriction of slip-line field, which implies uniform compression in chip formation zone. Based on the given model it has been found that imaginary shear line in orthogonal cutting is close to the trajectory of maximum normal stress and the problem about its determination has been considered as well. It has been shown that there is a second central slip-line field inside chip, which corresponds well to experimental data about stress distribution on tool rake face and tool-chip contact length. The suggested model would be useful in understanding mechanistic problems in machining.

CNC에 의한 SM45C 선삭시 절삭성능 평가 (Assessment of Cutting Performance for SM45C using CNC Lathe)

  • 황경충
    • 한국생산제조학회지
    • /
    • 제7권4호
    • /
    • pp.104-116
    • /
    • 1998
  • This paper provides a review of the performance for SM45C using the CNC lathe. Under the constant cutting area, the tool wear for large feed rate is more than the small feed rate, and the progress goes more rapidly as the cutting speed is increased. This is caused by the friction between the workpiece and the bite. The average cutting force increases as the feedrate increases, and decreases as the cutting speed increases. This is because the effective rake/shear angle becomes smaller as the feedrate becomes larger. The higher is the cutting speed and the aspect ratio (the ratio for depth of cut to feedrate), the lower is the cutting force and the surface roughness. Also, for the optimal selection of the cutting conditions, many experimental graphical data were obtained. That is, the cutting force, the tool life, and the surface roughness were measured and investigated as the depth of cut and the feedrate changed. And the size effect was examined as the depth of the cut varied.

  • PDF

강관의 Guillotine 전단날 형상 설계 (Shape Design of Guillotined Shear Cutters for Steel Pipes)

  • 조해용;이상민;이정길;김용연
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.105-112
    • /
    • 2005
  • The guillotined cutting process for the pipe was studied in this paper. Until now guillotining mechanism can not be practically applied in the industries because of the deformation of sheared section around cutting area, the coarse sheared surface, and the burs. To find optimum shapes of blade, several types of blade were experimentally studied. The cutting force normal to the axial direction of the pipe was compared with the theoretical result based on the cutting energy. The experimental maximum cutting forces were very good agreement with the theoretical results. It also discussed that the design parameters of guillotining system such as the blade shape and the clearance between the blade and the die made effects to the deformation of the cutting cross section area. The results show that the guillotining method can be applicable to the pipe cutting system by optimizing the blade shape and the clearance between the blade and the die of the guillotined cutting system with respect to the sheared pipe material.

3차원 절삭가공시 절삭력 예측에 관한 연구 (A Study On Prediction Of Three Dimensional Cutting Forces According To The Cutting Conditions)

  • 신근하
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 춘계학술대회 논문집
    • /
    • pp.152-157
    • /
    • 1995
  • In Turning It is good selection of cutting condition and cutting tools that influence upon the accuracy of dimension manufacturing efficiency and extension of tool life. Among them especially the identification of cutting force due to the change of cutting conditions which exerts a great influence on the turning is very important. In this study the cutting resistance due to the change of cutting conditions was caculated by using the energy method and good agreement in shown between theoritical and experimental results which were tested for the cutting resistance at the cemented carbide cutting tools with workpieces of SM20C and SM 45C.

  • PDF

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.