• 제목/요약/키워드: Shear Bond Stress

검색결과 148건 처리시간 0.023초

접착식 콘크리트 덧씌우기 포장의 부착거동 연구 (A Study on the Bond-Behavior of Bonded Concrete Overlays)

  • 김영규;이승우;한승환
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.31-45
    • /
    • 2012
  • PURPOSES: In Korea, rapid maintenance of distressed concrete pavement is required to prevent traffic jam of the highway. Asphalt concrete overlay has been used as a general maintenance method of construction for aged concrete pavement. AC overlay on existing concrete pavements experience various early distresses such as reflection crack, pothole and rutting, due to different physical characteristics between asphalt overlay and existing concrete pavement. Bonded concrete overlay(BCO) is a good alternative since it has advantages that can reduce various distresses during the service life since overlay material has similar properties with existing concrete pavements. Recently, BCO which uses the ultra rapid harding cement has been applied for maintenance of highway. BCO has advantage of structural performance since it does monolithic behave with existing pavement. Therefore, it is important to have a suitable bond strength criteria for securing performance of BCO. Bond strength criteria should be larger than normal tensile stress and horizontal shear stress occurred by traffic and environmental loading at bond interface. Normal tensile stress and horizontal shear stress need to estimated for the establishment of practical bond strength criteria. METHODS: This study aimed to estimate the bond stresses at the interface of BCO using the three dimensional finite element analysis. RESULTS: As a result of this study, major failure mode and maximum bond stress are evaluated through the analysis of normal tensile stress and horizontal shear stress for various traffic and environmental load conditions. CONCLUSIONS: It was known that normal tensile stresses are dominated by environmental loading, and, horizontal shear stresses are dominated by traffic loading. In addition, bond failure occurred by both of normal tensile stresses and horizontal shear stresses; however, normal tensile stresses are predominated over horizontal shear stresses.

Experimental Observation on Bond-Slip Behavior between Concrete and CFRP Plate

  • Yang, Dong-Suk;Hong, Sung-Nam;Park, Sun-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.37-43
    • /
    • 2007
  • This paper discusses the failure mode of reinforced concrete beams strengthened with composite materials based on six experimental set-ups to determine the FRP-to-concrete bond strength. Interfacial bond behavior between concrete and CFRP plates was discussed. Shear test were performed with different concrete compressive strengths (21 MPa and 28 MPa) and different bonding length (100 mm, 150 mm, 200 mm, and 250 mm). Shear test results indicate that the effective bond length (the bond length beyond which the ultimate load does not increase) was estimated as $196{\sim}204\;mm$ through linear regression analysis. Failure mode of specimens occurred due to debonding between concrete and CFRP plates. Maximum bond stress is calculated as about $3.0{\sim}3.3\;MPa$ from the relationships between bond stress and slip. Finally, the interfacial bond-slip model between CFRP plates and concrete, which is governed debonding failure, has been estimated from shear tests. Average bond stress was about $1.86{\sim}2.04\;MPa$, the volume of slip between CFRP plate and concrete was about $1.45{\sim}1.72\;mm$, and the fracture energy was found to be about $1.35{\sim}1.71\;N/mm$.

스티프너로 보강한 콘크리트 충전 원형 강관기둥의 부착응력에 관한 실험적 연구 (An Experimental Study on a Bond Stress in Concrete Filled Circular Steel Tubular Column Strengthened by the Stiffener)

  • 박성무;김성수;김원호;이형석
    • 한국공간구조학회논문집
    • /
    • 제2권2호
    • /
    • pp.51-58
    • /
    • 2002
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구 (Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load)

  • 이형석;박성무
    • 한국공간구조학회논문집
    • /
    • 제3권3호
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

콘크리트 충전 각형 강관기둥의 부착응력에 있어 shear-connector의 영향에 관한 실험적 연구 (A Experimental study about an effect of shear-connector at a bond stress in concrete filled rectangular tubular column)

  • 박성무;김성수;김원호;이형석;이경섭;송준근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.561-566
    • /
    • 2001
  • Load at steel beam column joints transfered by beam depend on bond strength between concrete and steel tube. But it is different to transmit a load efficiently in the established concrete filled steel tubular column. Therefore, shear-connector is demanded for transfering loads efficiently. An ascent of bond stress and a transmission of load after debonding are expected by a reinforcement of shear-connector

  • PDF

콘크리트 충전원형강관기둥의 부착응력에 있어 shear-connector의 영향에 관한 실험적 연구 (An experimental study about an effect of shear-connector at a bond stress in concrete filled circular steel tubular column)

  • 박성무;김성수;김원호;이형석;이우진;김경모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.567-572
    • /
    • 2001
  • A transmission of load that is transmitted by beam in steel beam-column joint depends on bond strength between concrete and steel tube. But it is different to transmit a load efficiently in the established concrete filled steel tubular column. Therefore, shear-connector is demanded for a reinforcement about a transmission of load. An ascent of bond stress and a transmission of load after debonding are expected by a reinforcement of shear-connector.

  • PDF

동결토 전단강도를 활용한 동착강도 산정에 관한 연구 (A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil)

  • 최창호;고성규
    • 한국지반공학회논문집
    • /
    • 제27권10호
    • /
    • pp.13-23
    • /
    • 2011
  • 동토기반 말뚝기초의 지지력은 말뚝구조물 표면과 주변 토사의 접촉면에서 발현되는 동착강도에 의해 산정되며, 이는 동착-강도가 동토지반 기초설계를 위한 가장 주요한 설계정수임을 의미한다. 동착강도는 토사종류, 동결온도, 말뚝표면에 수직방향으로 작용하는 지중응력, 재하속도, 말뚝구조물의 표면 거칠기 등 다양한 인자들에 동시다발적인 영향을 받는 것으로 보고되고 있다. 1960년대부터 동토지반 기초설계를 위한 동착강도 산정방법들이 제안되어 왔으나, 대부분 동결온도와 말뚝구조물 표면특성에 대한 영향은 고려하고 있는 반면 동착강도의 주요 영향인자 중 하나인 지중응력에 의한 영향을 고려하지 않고 있어 소정깊이 이상의 말뚝기초 설계를 위한 동착강도 산정방법으로 활용되기에는 한계가 있는 것으로 판단된다. 본 연구에서는 동결온도뿐 아니라 지중응력이 동착강도에 미치는 영향을 파악하기 위하여 직접전단시험기를 활용한 동결토 전단강도 및 동착강도 측정실험을 각각 수행하였다. 실험결과 전단강도와 동착강도는 모두 동결온도 조건이 낮아질수록, 혹은 수직응력 조건이 커질수록 증가하는 경향을 보였다. 전단강도와 동착강도의 정량적 관계분석을 위해 정의된 전단강도와 동착강도의 비 $r_s$는 초기 동결온도에서는 급격하게 감소하는 경향을 나타냈으나, 동결온도가 낮아질수록 증가하며 수렴구간을 형성해가는 경향을 보였다. 본 연구에서는 최종적인 연구결과로서 동결온도 및 수직응력 조건을 바탕으로 결정된 $r_s$값을 이용하여 동결토의 전단강도로부터 동착강도를 예측할 수 있는 방법을 제안하고 있다.

Investigation of the effects of connectors to enhance bond strength of externally bonded steel plates and CFRP laminates with concrete

  • Jabbar, Ali Sami Abdul;Alam, Md Ashraful;Mustapha, Kamal Nasharuddin
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1275-1303
    • /
    • 2016
  • Steel plates and carbon-fiber-reinforced polymer (CFRP) laminates or plates bonded to concrete substrates have been widely used for concrete strengthening. However, this technique cause plate debonding, which makes the strengthening system inefficient. The main objective of this study is to enhance the bond strength of externally bonded steel plates and CFRP laminates to the concrete surface by proposing new embedded adhesive and steel connectors. The effects of these new embedded connectors were investigated through the tests on 36 prism specimens. Parameters such as interfacial shear stress, fracture energy and the maximum strains in plates were also determined in this study and compared with the maximum value of debonding stresses using a relevant failure criterion by means of pullout test. The study indicates that the interfacial bond strength between the externally bonded plates and concrete can be increased remarkably by using these connectors. The investigation verifies that steel connectors increase the shear bond strength by 48% compared to 38% for the adhesive connectors. Thus, steel connectors are more effective than adhesive connectors in increasing shear bond strength. Results also show that the use of double connectors significantly increases interfacial shear stress and decrease debonding failure. Finally, a new proposed formula is modified to predict the maximum bond strength of steel plates and CFRP laminates adhesively glued to concrete in the presence of the embedded connectors.

Effects of harsh environmental exposures on the bond capacity between concrete and GFRP reinforcing bars

  • Al-Tamimia, Adil;Abed, Farid H.;Al-Rahmani, Abdulla
    • Advances in concrete construction
    • /
    • 제2권1호
    • /
    • pp.1-11
    • /
    • 2014
  • This paper demonstrates an experimental study to evaluate the effects of environmental exposures on the bond between ribbed Glass Fiber Reinforced Polymer (GFRP) reinforcing bars and concrete. The equation recommended by ACI 440-1R-06, for the bond stress,was evaluated in this study. A total of 16 pullout samples, 12with GFRP bars and 4with steel bars, were exposed to two different harsh environments for different periods of time. The exposed harsh environments included direct sun exposure and cyclic splash zone sea water. The variation in the shear (bond) strengths before and after exposure was considered as a measure of the durability of the bond between GFRP bars and concrete.Experimental results showed there is no significant difference of the bond strength between 60 and 90 days of exposures.It also showed that the empirical equation of the bond stress calculated by ACI 440-IR-06 is very conservative.

H형강 매입형 합성기둥의 부착강도 및 전단연결재의 전단거동 (Bond Strength between Concrete and Steel and Shear Behavior of Shear Connectors of H-shaped Steel Encased Composite Columns)

  • 왕녕;이혜림;이명재
    • 한국강구조학회 논문집
    • /
    • 제29권5호
    • /
    • pp.377-387
    • /
    • 2017
  • 이 연구에서는 강판 매입형 합성기둥의 Push-out Test를 통해 강재와 콘크리트의 부착면적에 따른 영향을 알아보았다. 이로써 부착면적이 넓을수록 부착응력은 작아진다는 경향이 조사되었다. 또한 소규모 매입형 합성기둥의 경우에는 설계기준에서 제시하는 공칭부착 응력값이 과소하게 적용되는 것을 확인하였다. 다음으로 H형강 매입형 합성기둥의 Push-out Test를 통해 전단연결재의 수와 간격에 따른 영향을 알아보았다. 이로써 전단연결재의 전단거동을 파악할 수 있었다.