• Title/Summary/Keyword: Sharing current control

Search Result 189, Processing Time 0.03 seconds

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.

Circulating Current Reduction Method Using High Frequency Voltage Compensation in Asynchronous Carriers for Modular Scalable Inverter System (Modular Scalable Inverter System에서 캐리어 비동기시 고주파 전압 보상을 이용한 순환전류 저감 기법)

  • Choi, Seung-Yeon;Kang, Shin-Won;Im, Jun-Hyuk;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.71-77
    • /
    • 2019
  • This study proposes a circulating current reduction method that uses high-frequency voltage compensation when carrier phase difference occurs between two inverters in MSIS. In MSIS, inverters are configured in parallel to increase power capacity and to increase efficiency by using inverters only as needed. However, in the parallel inverter structure, circulating current is inevitably generated. Circulating current increases the stress on the switch, adversely affects the current control performance, and renders load sharing difficult. The proposed method compensates for the output voltage reference of the slave module by using the high-frequency voltage so that the switching pattern of each module is matched even in asynchronous carriers. The validity of the proposed method is verified by simulations and experiments with 600 W IPMSM.

DC-DC Boost Converter with Dead-Time Adaptive Control and Power Switching (Dead-Time 적응제어 기능과 Power Switching 기능을 갖는 DC-DC 부스트 변환기)

  • Lee, Joo-young;Yang, Min-jae;Kim, Doo-Hoi;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.361-364
    • /
    • 2013
  • Since the non-overlapping gate driver used in conventional DC-DC boost converters generates fixed dead-times, the converters suffer from the body-diode conduction loss or the charge-sharing loss. A adaptive control method has been proposed to reduce these loses. In this method, however, occurrence of and overlapping time of two power transistors in CCM results in reduction of efficiency. In this paper, to overcome this problem a new adaptive control method in proposed, and a DC-DC boost converter with the proposed adaptive control and power switching has been designed in a 0.35um CMOS process. The designed converter outputs 3.3V from a input voltage of 2.5V. The switching frequency is 500kHz and the maximum power efficiency is 95.3% at a load current 150mA. The designed chip area is $1720um{\times}1280um$.

  • PDF

A High Efficiency Direct Instantaneous Torque Control of SRM based on the Nonlinear Model (비선형 모델기반 SRM의 고효율 직접 순시토크 제어)

  • An, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1047-1054
    • /
    • 2007
  • This paper presents a high efficiency direct instantaneous torque control (DITC) of Switched Reluctance Motor(SRM) based on the nonlinear model. The DITC method can reduce the high inherent torque ripple of SRM drive system, but drive efficiency is somewhat low due to the high current and switching loss during commutations. In order to reduce a torque ripple, a fast torque reference trajectory is selected at every instantaneous rotor position. Based on the nonlinear model of SRM, the developing torque by one phase is fixed and the other phase is regulated for minimum switchings of phase switch and variation of torque. The switching during commutation can be reduced and fast commutation can be obtained in the proposed method. As a result, drive efficiency could be improved as well as torque ripple reduction. The validity of proposed method is verified by computer simulations and comparative experiments.

Extending VNC Server and Client for Sharing Clipboard Contents Composed of Text and Images (텍스트와 이미지로 구성된 클립보드 콘텐츠 공유를 위한 VNC 서버와 클라이언트의 확장)

  • Lee, Tae-Ho;Lee, Hong-Chang;Park, Yang-Su;Lee, Myung-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.115-126
    • /
    • 2008
  • VNC(Virtual Network Computing) is a desktop sharing system based on the RFB(Remote Framebuffer) protocol which allows you to control a remote computer running a VNC server through a VNC client(or viewer) on a local computer. To exchange information between the two computers, VNC provides the functionality of sharing the clipboard contents. Unfortunately, the current VNC softwares support only the clipboard text contents, not providing methods for sharing the clipboard multimedia contents such as images. In this paper, we extend the RFB protocol to share the clipboard contents composed of text and images. Also, to support the developed protocol. we extend both the UltraVNC server and the JavaViewer VNC client which are free open-source softwares. Through the developed VNC softwares, users can exchange the clipboard contents including texts and images between the remote computer and the local computer.

  • PDF

Fuzzy-based Processor Allocation Strategy for Multiprogrammed Shared-Memory Multiprocessors (다중프로그래밍 공유메모리 다중프로세서 시스템을 위한 퍼지 기반 프로세서 할당 기법)

  • 김진일;이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.409-416
    • /
    • 2000
  • In the shared-memory mutiprocessor systems, shared processing techniques such as time-sharing, space¬sharing, and gang-scheduling are used to improve the overall system utilization for the parallel operations. Recently, LLPC(Loop-Level Process Control) allocation technique was proposed. It dynamically adjusts the needed number of processors for the execution of the parallel code portions based on the current system load in the given job. This method allocates as many available processors as possible, and does not save any processors for the parallel sections of other later-arriving applications. To solve this problem, in this paper, we propose a new processor allocation technique called FPA(Fuzzy Processor Allocation) that dynamically adjusts the number of processors by fuzzifYing the amounts ofueeded number of processors, loads, and estimated execution times of job. The proposed method provides the maximum possibility of the parallism of each job without system overload. We compare the performances of our approaches with the conventional results. The experiments show that the proposed method provides a better performance.

  • PDF

An Inherent Zero-Voltage and Zero-Current-Switching Full-Bridge Converter with No Additional Auxiliary Circuits

  • Wang, Jianhua;Ji, Baojian;Wang, Hongbo;Chen, Naifu;You, Jun
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.610-620
    • /
    • 2015
  • An inherent zero-voltage and zero-current-switching phase-shifted full-bridge converter with reverse-blocking insulated-gate bipolar transistor (IGBT) or non-punch-through IGBT is proposed in this paper. This converter not only ensures that the switches in the lagging leg works at zero-current switching, but also minimizes circulating conduction loss without any additional auxiliary circuits. A 1.2 kW hardware prototype is designed, fabricated, and tested to verify the proposed topology. The control loop design procedures with small-signal models are also presented. A simple, low-cost, and robust democratic current-sharing circuit is also introduced and verified in this study. The proposed converter is a suitable alternative for compact, cost-effective applications with high-voltage input.

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

Development of 8kW ZVZCS Full Bridge DC-DC Converter by Parallel Operation (병렬제어를 적용한 8kW급 영전압/영전류 풀 브릿지 DC-DC 컨버터 개발)

  • Rho, Min-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.400-408
    • /
    • 2007
  • In this paper, development of the 8kW parallel module converter is presented. For a effective configuration of FB-PWM converter, this paper proposes 4-parallel operation of 2 kw-module. FB converter of 2-kW module is controlled by phase shut PWM and in order to achieve ZVZCS, the simple auxiliary circuit is applied in secondary side. In order to achieve ZCS, control logic for auxiliary circuit operation is designed to reset the primary current during free-wheeling period. For output current sharing of 4-modules, the charge control is employed. The charge control logic is designed with phase shift PWM logic. Voltage controller is implemented by using DSP(TMS320LF2406) with A/D conversion data of the output current and voltage of each module. The developed converter is installed in PCU(Power Conditioning Unit) for HSG(High Speed Generator) in a vehicle and health monitoring system is implemented for vehicle operation test. Finally, performance of the developed converter is proved under practical operation of HSG.

Unified Controller for 100kVA Emergency Generator (100kV급 비상발전기용 통합제어기)

  • Jeong, C.Y.;Cho, J.G.;Baek, J.W.;Lee, J.J.;Kim, Y.J.;Yoo, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2801-2803
    • /
    • 1999
  • An unified controller for emergency generator is presented to control AVR and Governor and l00kVA power conditioner. This controller is operated to compensate current harmonics and asymmetries caused by nonlinear load and unbalance loads. The power conditioner shapes the source current sinusoidal in phase with source voltage and allows the generator to maximum power even to the single phase load. Also this power conditioner allows that three phase generator synchronizes with single phase main source and load sharing. An l00kVA generator system was built and the unified controller is realized with DSP(TMS320C32PCMA). Experimental results for many load conditions are presented to verify the performance of the unified controller.

  • PDF