• 제목/요약/키워드: Shaping Process

검색결과 292건 처리시간 0.029초

임의의 형상 성형을 위한 새로운 공간 직접 성형 기술 (New Technique of Spatial Printing of Materials for Arbitrary Shape Forming)

  • 이일한;정용재;김창경
    • 한국표면공학회지
    • /
    • 제33권2호
    • /
    • pp.107-114
    • /
    • 2000
  • In this study, we investigated the possibility of the application of the EzROBO system to direct shaping techniques which can make arbitrary shapes without any specific mold. We formed arbitrary shapes using raw materials of EH-260D (Epoxy+Binder) with the conditions of $250\mu\textrm{m}$ layer thickness, 0.2MPa working pressure, 20mm/sec working velocity, and 1.8mm needle thickness. The developed Spatial Printing Technique showed enhanced working velocity and lower cost than existing 3DP process, and is expected to replace the existing process through the process optimization in the future.

  • PDF

Ni/MH 2차전지용 Fe-Ti계 전극 제조공정에 대한 연구 (A Study on the Manufacturing Process of Fe-Ti Type Electrode for Ni/MH Secondary Battery)

  • 정상식;김기원;안효준;정순돌
    • 한국수소및신에너지학회논문집
    • /
    • 제9권2호
    • /
    • pp.65-75
    • /
    • 1998
  • 실용적인 Fe-Ti계 수소저장합금전극을 제조하기위한 적절한 공정을 확립하기위하여 다섯가지의 서로다른 제조공정을 선택하여 조사하여 보았다. 전극제조를 위해 먼저 FeTi 합금을 플라즈마 아크 용해로에서 용해제조한 후 분쇄하여 분말을 만들고 이를 성형하였다. 성형전에 합금분말을 Ni무전해도금하여 본 결과 Fe-Ti 합금의 방전특성이 개선되었으며 열처리효과에 대하여도 검토하여 보았다. 성형전 합금분말을 열처리하는 경우 열처리 온도가 증가함에 따라 전극의 방전용량이 증가함을 확인하였으며 특히 성형후 $100^{\circ}C$의 온도에서 열처리하는 경우 가장 좋은 결과를 얻을 수 있었다. 이들 결과로 부터, Ni무전해도금과 열처리가 Fe-Ti 계 전극의 방전성능을 향상시키는데 결정적인 역할을 함을 알 수 있었다. 또한, 본 연구에서 제안된 공정에 따라서 Mn을 첨가하여 Fe-Ti-Mn 전극을 제조하고 그 성능을 조사하여 본 결과 대단히 바람직한 결과를 얻었다.

  • PDF

마산시 경관의 형성과정에 관한 연구 (The shaping process of Masan urban landscape)

  • 옥한석
    • 대한지리학회지
    • /
    • 제26권
    • /
    • pp.15-51
    • /
    • 1982
  • 이 글에서는 다음의 내용을 다루었다. 1. 마산의 입지조건과 합포.마산포의 형성, (1) 마산의 입지조건, (2) 합포와 포산포의 형성 2. 신마산의 등장과 단일욱시의 성립, (1) 신마산의 등장, (2) 단일욱시의 성립 3. 마산의 인구팽창과 동마산의 성장, (1) 마산의 인구팽창, (2) 동마산의 성장, (3) 마산시의 입체경관(skyline)

  • PDF

열원을 이용한 공정에서 지그재그 공구 경로 연결 알고리즘 (Zigzag Tool-Path Linking Algorithm for Shaping Process Using Heat Source)

  • 김효찬;이상호;양동열
    • 한국CDE학회논문집
    • /
    • 제9권4호
    • /
    • pp.286-293
    • /
    • 2004
  • Recently, hot processing using the heat source like laser machining and RFS was developed and spreaded gradually. In order to generate tool-path for the proper hot tool, a new tool-path linking algorithm is needed because tool-path linking algorithm for machining can't be applied. In this paper, zigzag tool-path liking algorithm was proposed to generate tool-path automatically for RFS. The algorithm is composed of three steps: 1) Generating valid tool-path element, 2) Storing tool-path elements and creating sub-groups, 3) linking sub-groups. Using the proposed algorithm, CAD/CAM software for the tool-path generation of hot tool was developed. The proposed algorithm was applied and verified for Venus's face and die of cellular phone case.

분말사출성형을 통해 제조된 소결체의 기공율에 따른 강도예측모델 (A Model for the Relation between Strength and Porosity in Sintered Parts Produced by Powder Injection Molding Process)

  • 성환진;하태권;안상호;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.375-378
    • /
    • 2003
  • In the present study, a new approach to predict the strength of sintered materials has been carried out and a new framework combining neck growth model and ideal pore model has been established based on the results of tensile tests on powder injection molded specimens with the various porosity. Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. PIM delivers structural materials in a shaping technology previously restricted to polymers. 17-4 PH stainless steel powders with average diameters of 10 $\mu\textrm{m}$ were injection-molded into flat tensile specimens sintered at the various temperatures ranging from 900 to 1350$^{\circ}C$ for 1h. The relationships between strength and porosity were applied to the experimental results and verified.

  • PDF

원자로의 정치경제학과 안전 (The Political Economy of Nuclear Reactors and Safety)

  • 박진희
    • 공학교육연구
    • /
    • 제15권1호
    • /
    • pp.45-52
    • /
    • 2012
  • The success history of Light Water Reactors (PWR and BWR) showed how a dominant technology could be shaped in a political and economical context. The american nuclear politics, the interest of american nuclear industry, and the accumulated technological know-hows made it possible that the not inherently safe reactor-Light Water Reactor- became a prominent reactor model. The path dependency of reactor technology on LWR kept the engineers from developing a new safer reactor, even if the severe reactor accidents occurred. In oder to increase safety of nuclear power system, we should understand the social shaping process of nuclear technology.

선삭에서 공구열변형이 표면 형상에 미치는 영향에 관한 연구 (A Study on the Effect of Tool Thermal Deformation on Surface Profiles for Turing Process)

  • 염철만;신근하;홍민성
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.33-39
    • /
    • 2001
  • During the turning of the workpiece, cutting heat causes thermal deformation of the cutting tool which influences the surface characteristics of the machined part. This paper presents a study of thermal deformation of the cutting tool. For this purpose, cutting tool is modeled based of Pro/Engineering and the thermal deformation is simulated by means of the finite element method. The thermal effect on the surface roughness profile is simulated by using surface-shaping system. It has been shown that the results of simulation are similar to those of experiment.

  • PDF

The role of mitochondria in apoptosis

  • Jeong, Seon-Yong;Seol, Dai-Wu
    • BMB Reports
    • /
    • 제41권1호
    • /
    • pp.11-22
    • /
    • 2008
  • Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. $Ca^{2+}$ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize $Ca^{2+}$ signaling. Massive accumulation of $Ca^{2+}$ in the mitochondria leads to apoptosis. The $Ca^{2+}$ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.