• Title/Summary/Keyword: Shaped charge device

Search Result 8, Processing Time 0.024 seconds

Assessment of Underwater Penetration Performance for the Shape of the External Device of Shaped Charge (성형폭약 외부장치 형상에 따른 수중 관입성능 평가)

  • Suk, Chul-Gi;Noh, You-Song;Ko, Young-Hun;Park, Hoon;Cho, Sang-Ho;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • For underwater steel structure, cut that underwater shaped charge device that combines a spring hose, which is an external device of pressure resistance and flexibility with flexible shaped charge, was invented. As a basic experiment for an optimum condition design, an penetration performance was compared by external device shape. To evaluate the result of an experiment, image analysis was carried out after obtaining the model by using the liquid rubber for the penetrated steel plate. To simulate the penetrating process of shaped charge, the AUTODYN program has been used. As a result of analysis, while the average penetration depth of circular and square shaped external devices were similar, the penetration quality was more uniform in the case of circle. In addition, water infiltration occurred in square case, displacement and strain rate according to the increase of the water pressure were measured high.

Assessment of Penetration Performance and Optimum Design of Shaped Charge Device for Underwater Steel Cutting (수중 강재절단을 위한 성형폭약 장치 최적설계 및 관입성능 평가)

  • Ko, Young-Hun;Kim, Seung-Jun;Kim, Jung-Gyu;Yang, Hyung-Sik;Kim, Hee-Do;Park, Hoon;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, several underwater steel cutting tests and AUTODYN numerical analyses were conducted to evaluate the penetration performance of a shaped charge device. Parameter analyses for the contribution rate were conducted by using the robust design method. The parameters adopted in this study were chamber type, stand-off, and wire setting, each of which had three levels in the analysis. Analysis results showed that the contribution rate was most affected by the stand-off, followed by the chamber type and wire setting. Experiments of underwater steel cutting were conducted at water depth of 25m. As expected, the experiments and numerical simulation showed similar results for underwater steel cutting performance, and thus the feasibility of the shaped charge device for underwater steel cutting at deep water depth was verified.

An Evaluation of Cutting Performance for Cutting Structural Steel using Charging Container (장약용기를 이용한 강재 절단 성능 평가)

  • Park, Hoon;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.13-21
    • /
    • 2020
  • The shaped charge was used in explosive demolition of a steel frame structure, but it was often not used because it was limited to use and impossible to supply at domestic and overseas. Existing linear shaped charge did not have sufficient cutting performance to cut steel frame structures with a huge scale and thick steel plate. To solve these problems, we produced a device that could generate metal jets using industrial explosives of high detonation velocity and pressure. In this study, we made a charging container of three types which applicable to explosive demolition of steel frame structures. The experiment of cutting performances was carried out to evaluate the effect of cutting of charging containers on the various thicknesses of the H-beam and steel plate. As a result of the experiment, sufficient cutting performance was confirmed.

Development of Charging Container for Cutting Steel Plate and Evaluation of its Cutting Performance (강재 절단을 위한 장약용기의 개발과 절단 성능 평가)

  • Park, Hoon;Min, Gyeong-Jo;Cho, Sang-Ho;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.36 no.2
    • /
    • pp.10-18
    • /
    • 2018
  • The shaped charge is used in explosive demolition of steel frame structure, but it was often not used because it was limited to use or impossible to supply at domestic and foreign. To solve this problem, we needed a device that could generate matal jets using industrial explosive. In this study, we made a charging container, which metal jets were generated when explosives were detonated. Cutting performance tests were carried out to evaluate the effect of cutting of a charging container on a steel plate of 25mm thickness. In addition, we compared the results between the numerical simulation of penetration process and cutting performance tests and then was evaluated a cutting performance for steel plates of 35mm and 70mm thickness.

Development of Automatic Hole Position Measurement System using the CCD-camera (CCD-카메라를 이용한 홀 변위 자동측정시스템 개발)

  • 김병규;최재영;강희준;노영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.127-130
    • /
    • 2004
  • For the quality control of the industrial products, an automatic hole measuring system has been developed. The measurement device allows X-Y movement due to contact forces between a hole and its own circular cone and the device is attached to an industrial robot. Its measurement accuracy is about 0.04mm. This movement of the plate is measured by two LVDT sensor system. But this system using the LVDT sensors is restricted by high cost and precision of measurement and correspondence of environment so particularly, a vision system with CCD-Camera is discussed in this paper for the above mentioned purpose. The device consists of two of two links jointed with hinge pins basically and, they guarantee free movement of the touch prove attached on the second link in the same plane. These links are returned to home position by the spring plungers automatically after each process for the next one. On the surface of the touch prove, it has a circular white mark for camera recognition. The system detect and notify the center coordinate of capture mark image through the image processing. Its measuring accuracy has been proved to be about $\pm$0.01mm through the repeated implementation over 200 times. This technique will shows the advantage of touch-indirect image capture idea using cone-shaped touch prove in various symmetrical shaped holes particulary, like tapped holes, chamfered holes, etc As a result, we attained our object in a view of the accuracy, economical efficiency, and functionality

  • PDF

Characteristics of Si Nano-Crystal Memory

  • Kwangseok Han;Kim, Ilgweon;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.40-49
    • /
    • 2001
  • We have developed a repeatable process of forming uniform, small-size and high-density self-assembled Si nano-crystals. The Si nano-crystals were fabricated in a conventional LPCVD (low pressure chemical vapor deposition) reactor at $620^{\circ}c$ for 15 sec. The nano-crystals were spherical shaped with about 4.5 nm in diameter and density of $5{\times}l0^{11}/$\textrm{cm}^2$. More uniform dots were fabricated on nitride film than on oxide film. To take advantage of the above-mentioned characteristics of nitride film while keeping the high interface quality between the tunneling dielectrics and the Si substrate, nitride-oxide tunneling dielectrics is proposed in n-channel device. For the first time, the single electron effect at room temperature, which shows a saturation of threshold voltage in a range of gate voltages with a periodicity of ${\Delta}V_{GS}\;{\approx}\;1.7{\;}V$, corresponding to single and multiple electron storage is reported. The feasibility of p-channel nano-crystal memory with thin oxide in direct tunneling regime is demonstrated. The programming mechanisms of p-channel nano-crystal memory were investigated by charge separation technique. For small gate programming voltage, hole tunneling component from inversion layer is dominant. However, valence band electron tunneling component from the valence band in the nano-crystal becomes dominant for large gate voltage. Finally, the comparison of retention between programmed holes and electrons shows that holes have longer retention time.

  • PDF

Photo Stimulus Displacement Properties of Nano structure Organic Ultra Thin Films (나노구조 유기초박막의 광자격 변위특성)

  • Song, Jin-Won;Cho, Su-Young;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.209-211
    • /
    • 2004
  • In the Langmuir-Boldgett(LB) technique, a monolayer on the water surface is transferred on to a substrate, which is raised and dipped through the surface, and one can obtain multilayers in which constituent molecules periodically are arranged in layer. The LB technique has attracted considerable interest in the fabrication of electrical and electronic device, e.g.. Many researchers have investigated the electrical properties of monolayer and multiplayer films. Dendrimers represent a new class of synthetic macromolecules sharacterized by a regularly branched treelike structure. Multiple branching yields a large number of chain ends, which distinguishes dendrimers from conventional starlike polymers and microgels. Azobenzene dendrimer is one of the dendritic macromolecules that includes the azo-group which exhibits a photochromic character. Due to the presence of the charge transfer part, the azo-group, and having a rod-shaped structure, these compounds are expected to have the potential interest in electronics and ptoelectronics, especially in nonlinear optics. In the present paper, we give a pressure stimulation into organic thin films and detect the induced displacement current.

  • PDF

Numerical Analysis of Intense Electric Current Pulse to Disperse Shaped Charge Metal Jet (성형작약탄 금속제트 산란을 위한 대전류 펄스의 수치해석적 연구)

  • Park, Hyeong Gyu;Kim, Dong Kyu;Kim, Si Woo;Joo, Jae Hyun;Song, Woo Jin;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • The electromagnetic force induced by an intense electric current pulse, which generates an electromagnetic field around the metal jet originating from a shaped charge, can disperse and scatter the high-speed metal jet. An electric device consisting of an RLC circuit applies an intense electric current pulse that flows in the circuit while the metal jet passes between two electrodes. In this study, the metal jet formation was simulated using the ALE technique in 2-D, and a 3-D finite element model was mapped using 2-D simulation results to induce the electric current directly. The deformed shapes of the metal jet and the electromagnetic force were calculated using a finite element analysis by inducing the electric current directly, and the major parameters of the intense electric current pulse for breaking up the metal jet were examined.