• Title/Summary/Keyword: Shape-Generation

Search Result 1,000, Processing Time 0.027 seconds

Massive Parallel Processing Algorithm for Semiconductor Process Simulation (반도체 공정 시뮬레이션을 위한 초고속 병렬 연산 알고리즘)

  • 이제희;반용찬;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.48-58
    • /
    • 1999
  • In this paper, a new parallel computation method, which fully utilize the parallel processors both in mesh generation and FEM calculation for 2D/3D process simulation, is presented. High performance parallel FEM and parallel linear algebra solving technique was showed that excessive computational requirement of memory size and CPU time for the three-dimensional simulation could be treated successively. Our parallelized numerical solver successfully interpreted the transient enhanced diffusion (TED) phenomena of dopant diffusion and irregular shape of R-LOCOS within 15 minutes. Monte Carlo technique requires excessive computational requirement of CPU time. Therefore high performance parallel solving technique were employed to our cascade sputter simulation. The simulation results of Our sputter simulator allowed the calculation time of 520 sec and speedup of 25 using 30 processors. We found the optimized number of ion injection of our MC sputter simulation is 30,000.

  • PDF

Effect of the Pore Structure on the Anodic Property of SOFC (SOFC 음극의 기공구조가 음극특성에 미치는 영향)

  • 허장원;이동석;이종호;김재동;김주선;이해원;문주호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.86-91
    • /
    • 2002
  • Solid Oxide Fuel Cells (SOFC) are of great interest of next generation energy conversion system due to their high energy efficiency and environmental friendliness. The basic SOFC unit consists of anode, cathode and solid electrolyte. Among these components, anode plays the most important role for the oxidation of fuel to generate electricity and also behaves as a substrate of the whole cell. It is normally requested that the anode materials should have the high electrical conductivity and gas permeability to reduce the polarization loss of the cell. In this study, the effect of pore former on the microstructure of anode substrate was investigated and thus on the electrical conductivity and the gas permeability. According to the results, microstructure and electrical conductivity of anode substrate were greatly influenced by the shape of pore former and especially by the anisotrpy of the pore former. The use of anisotropic pore former is supposed to deteriorate the cell performance by which the electrical conduction path is disconnected but also the effective gas diffusion path for the fuel is reduced.

Analysis of Pulmonary Surfactant after Intratracheal Instillation of SWNCT and MWCNT (SWCNT 및 MWCNT의 기관내 점적주입 후 폐 계면활성제의 분석)

  • Lee, Byeongwoo;Seo, Jungkwan;Shim, Ilseob;Eom, Igchun;Kim, Plije
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • Objectives: Carbon nanotubes (CNTs) are next-generation industrial nanoparticles which possess excellent mechanical strength along with good thermal conductivity and electric properties. Given these characteristics, carbon nanotubes are being widely applied in various fields, including research and development. However, concerns have been raised over hazardous properties due to their similar fiber shape to asbestos. Recent studies have shown that CNTs pose potential hazards which may cause fibrosis and/or lung inflammation similarly to asbestos. Methods: After intratracheal instillation of SWCNTs and MWCNTs to rats, pulmonary surfactant (PS) of the SWCNTs and MWCNTs was measured and analyzed using bronchoalveolar lavage fluid collected from the lung. After a single intratracheal instillation of SWCNTs and MWCNTs, phospholipid predominantly showed a significant increase compared to the control group, while proteins exhibited a significant increase both three days and one week after instillation. Results: As a result of surface tension, MWCNTs showed a significant decrease three days after treatment compared to the control group. In the case of the total cell number three days after instillation, MWCNTs revealed a temporarily significant increase when compared to the control group. For PMN number, when compared to the control group, SWCNTs displayed a significant increase throughout the observation period, while MWCNTs showed a significant increase three days and three months after treatment. Conclusions: After exposure to CNTs, the total cell number and PNT number, which indicate inflammatory response, were significantly increased. Therefore, this study suggests fiber-shaped CNTs may have a harmful effect on the lungs.

Effect of Ionizing Radiation and Mercury Chloride (II) on Cell Morphology in Yeast Cells Frequently and Temporarily Treated with Both Stressors (방사선과 염화수은의 일시 및 반복 복합 처리된 효모세포의 산화적 스트레스 적응과 형태 변화)

  • Kim, Su-Hyoun;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. Ionizing radiation (IR) is an active tool for destruction of cancer cells and diagnosis of diseases, etc. IR induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm and nucleus. Yeasts have been a commonly used material in biological research. In yeasts, the physiological response to changing environmental conditions is controlled by the cell types. Growth rate, mutation and environmental conditions affect cell size and shape distributions. In this work, the effect of IR and mercury chloride (II) on the morphology of yeast cells were investigated. Saccharomyces cerevisiae cells were treated with IR, mercury chloride (II) and IR combined with mercury chloride (II). Non-treated cells were used as a control group. Morphological changes were observed by a scanning electron microscope (SEM). The half-lethal condition from the previous experimental results was used to the IR combined with mercury. Yeast cells were exposed to 400 and 800 Gy at dose rates of 400Gy $hr^{-1}$ or 800 Gy $hr^{-1}$, respectively. Yeast cells were treated with 0.05 to 0.15 mM mercury chloride (II). Oxidative stress can damage cellular membranes through a lipidic peroxidation. This effect was detected in this work, after treatment of IR and mercury chloride (II). The cell morphology was modified more at high doses of IR and high concentrations of mercury chloride(II). IR and mercury chloride (II) were of the oxidative stress. Cell morphology was modified differently according to the way of oxidative stress treatment. Moreover, morphological changes in the cell membrane were more observable in the frequently stress treated cells than the temporarily stress treated cells.

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

A Study on the Literature Review of Acorn in Korea (도토리에 대한 국내의 연구 동향)

  • 김복남
    • Korean journal of food and cookery science
    • /
    • v.11 no.2
    • /
    • pp.158-163
    • /
    • 1995
  • This study was surveyed and compiled the contribution about acorn in korea .the physico-chemical properties of acorn and acorn starch. preparation of acorn starch and elimination of the acorn tannin, the rheological properties of acorn starch gel. Nutrition of acorn and antioxidative activity of tannin in acorn extract. The result obtained were as follow. 1. The chemical compositions of acorn were water 6.5∼13.7%, crude ash 1.9∼3.4%, crude fat 1.1∼5.0%, crude protein 5.8∼7.8%, crude fiber 2.1∼3.6%, N-free extract 71∼77.5%, total tannin 4.6∼9.3%, Ca 92.7∼460.9mg%, p 80.0∼740.9mg%, Na 66.2∼93.9 mg%, and K 867.9∼983.1mg%. 2. The acorn tannin was extracted with water, acetone, and ethanol. The generation method was wash SE settling method with water. 3. The shape of acorn starch granule was rounded triangular and some elliptical, rasing power 12.4∼12.5, Blue value 0.43∼0.47, Alkali number 10.8∼11.3, Amount of Arnylose 28.8∼30.50% Tannin contents on the initial go tim-zation temperature of acorn starch were not influenced but maximum and cooling viscosity o the acorn starch were decreased. 4. Nutritional effect and diet absorption rate were not influence, by rice and 20% T-A(elimination of tannin from the acorn) mixed diet, and the content of lipid in s rum were not influenced by rice 40% and T-A (elimination of tannin from the acorn) mixed diet. 5. jallic acid, digallic acid, gallotannin were contained in acorn powder extract. The main antioxidative : stlvity was speculated due to the gallic acid.

  • PDF

Development of Korean-Sign Language Generating System based on Motion-Primitives (Motion-Primitives에 의한 한국수화 생성시스템의 개발)

  • ;;;Hiroyuki Sakato;Shan Lu;Seiji lgi
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.3
    • /
    • pp.238-246
    • /
    • 2001
  • We have developed the sign-language synthesis system, which can be applied for intelligent terminal equipments, for the purpose of communications between normal people and the hearing-impaired. In the system, we generate the behavior of the sign-language words using CG animation based on Motion-Primitives of the motion observed of each legion of the body in the generation of words, the conventional system was difficult to control the shape of hands and the motions of hands and shoulder, requiring lots of time for the processing. Also it is a big problem to make a large database of sign-language, because it requires over 5,000 words to translate the sign-language. Therefore, in this paper, we propose the new system that is easy to construct the database by using Motion-Primitives, which can make paths of various motions more smooth than conventional systems. We have tested 100 words of the sign-language against the hearing-impaired with the proposed system. As the result of testing by the proposed system, we have earned a good recognition rate with 82%. On the other hand, we had earned the recognition ratio with 76% by using the former system.

  • PDF

Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength (잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석)

  • Kang, Chung-Gil;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF

View Morphing for Generation of In-between Scenes from Un-calibrated Images (비보정 (un-calibrated) 영상으로부터 중간영상 생성을 위한 뷰 몰핑)

  • Song Jin-Young;Hwang Yong-Ho;Hong Hyun-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Image morphing to generate 2D transitions between images may be difficult even to express simple 3D transformations. In addition, previous view morphing method requires control points for postwarping, and is much affected by self- occlusion. This paper presents a new morphing algorithm that can generate automatically in-between scenes from un-calibrated images. Our algorithm rectifies input images based on the fundamental matrix, which is followed by linear interpolation with bilinear disparity map. In final, we generate in-between views by inverse mapping of homography between the rectified images. The proposed method nay be applied to photographs and drawings, because neither knowledge of 3D shape nor camera calibration, which is complex process generally, is required. The generated in-between views can be used in various application areas such as simulation system of virtual environment and image communication.

Realistic individual 3D face modeling (사실적인 3D 얼굴 모델링 시스템)

  • Kim, Sang-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1187-1193
    • /
    • 2013
  • In this paper, we present realistic 3D head modeling and facial expression systems. For 3D head modeling, we perform generic model fitting to make individual head shape and texture mapping. To calculate the deformation function in the generic model fitting, we determine correspondence between individual heads and the generic model. Then, we reconstruct the feature points to 3D with simultaneously captured images from calibrated stereo camera. For texture mapping, we project the fitted generic model to image and map the texture in the predefined triangle mesh to generic model. To prevent extracting the wrong texture, we propose a simple method using a modified interpolation function. For generating 3D facial expression, we use the vector muscle based algorithm. For more realistic facial expression, we add the deformation of the skin according to the jaw rotation to basic vector muscle model and apply mass spring model. Finally, several 3D facial expression results are shown at the end of the paper.