• 제목/요약/키워드: Shape variables

검색결과 1,195건 처리시간 0.033초

헤링본 미세혼합기의 크리깅 모델을 사용한 최적형상설계 (Shape Optimization of A Micromixer with Herringbone Grooves Using Kriging Model)

  • 아매드 앤사리;김상용
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.711-717
    • /
    • 2007
  • Shape optimization of a staggered herringbone groove micromixer using three-dimensional Navier-Stokes analysis has been carried using Kriging model. The analysis of the degree of mixing is performed by the calculation of spatial data statistics. The calculation of the variance of the mass fraction at various nodes on a plane in the channel is used to quantify mixing. A numerical optimization technique with Kriging model is applied to optimize the shape of the grooves on a single wall of the channel. Three design variables, namely, the ratio of groove width to groove pitch, the ratio of the groove depth to channel height ratio and the angle of the groove, are selected for optimization. A mixing index is used as the objective function. The results of the optimization show that the mixing is very sensitive to the shape of the groove which can be used in controlling mixing in microdevices.

날개-평판 접합부에서의 날개 앞전 형상 최적화를 통한 유동특성 향상 (Improvement of the Flow Around Airfoil/Flat-Plate Junctures by Optimization of the Leading-Edge Shape)

  • 조종재;김귀순
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.257-265
    • /
    • 2009
  • 본 논문에서는 2차유동손실을 일으키는 주요 요인 중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전의 형상을 결정하는 변수를 정하고 이를 최적화 하였다. 근사최적설계 기법을 이용최적화를 수행하였다. 유동해석과 최적화 프로그램으로는 $FLUENT^{TM}$$iSIGHT^{TM}$를 이용하였다. 최적화 수행결과, 기준 모델의 경우보다 전압력 계수가 약 9.79% 감소하였다.

  • PDF

단단 천음속 축류압축기 동익의 Stacking Line 설계 최적화 (Optimal Design for Stacking Line of Rotor Blade in a Single-Stage Transonic Axial Compressor)

  • 장춘만;;김광용
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.7-13
    • /
    • 2006
  • Shape optimization of a rotor blade in a single-stage transonic axial compressor has been performed using a response surface method and three-dimensional Navier-Stokes analysis. Two shape variables of the rotor blade, which are used to define a blade skew, are introduced to increase an adiabatic efficiency. Throughout the shape optimization of a rotor blade, the adiabatic efficiency is increased to about 2.2 percent compared to that of the reference shape of the stator. The increase in efficiency for the optimal shape of the rotor is due to the pressure enhancement, which is mainly caused by moving the separation position on the suction surface of rotor blade to the downstream direction.

신경망 기법을 이용한 다익 홴/스크롤 시스템의 컷오프 최적화 (Shape Optimization of Cut-Off in Multiblade Fan/Scroll System Using CFD and Neural Network)

  • 한석영;맹주성;유달현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.365-370
    • /
    • 2001
  • In order to minimize unstable flow occurred at a multiblade fan/scroll system, optimal angle and shape of cut-off was determined by using two-dimensional turbulent fluid field analyses and neural network. The results of CFD analyses were used for learning as data of input and output of neural network. After learning neural network optimization process was accomplished for design variables, the angle and the shape of cut-off, in the design domain. As a result of optimization, the optimal angle and shape were obtained as 71 and 0.092 times the outer diameter of impeller, respectively, which are very similar values to previous studies. Finally, it was verified that the fluid field is very stable for optimal angle and shape of cut-off by two-dimensional CFD analysis.

  • PDF

형상기억합금을 이용한 3 차원 비선형 트러스 지능작동기 해석 (Analysis of 3-D non-linear truss smart actuator using SMA)

  • 양성필;김상헌;리녕학;류정현;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.557-561
    • /
    • 2008
  • Shape memory alloys (SMA) have interesting features which are the superelastic effect (SE), shape memory effect (SME), two-way SME (TWSME), and so on. These are utilized in actuation factor. The thermo-mechanical constitutive equations of SMA proposed by Lagoudas et al. were employed in the present study for simulating SMA truss structures. The constitutive equation includes the necessary internal variables to account for the material transformations and is utilized in the non-linear finite element procedure of three dimensional truss structures that composed SMA bar (wholly or partially). In this study, we observed which element should be actuated to get a desired shape (actuation shape) from computational analysis. To reach this goal, we apply SMA constitutive equation to non-linear finite element formulation. And then, we simulate two-way shape memory effect as well as superelastic effect of various three dimensional truss using SMA.

  • PDF

Optimal Shape Design of Dielectric Micro Lens Using FDTD and Topology Optimization

  • Chung, Young-Seek;Lee, Byung-Je;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • 제13권2호
    • /
    • pp.286-293
    • /
    • 2009
  • In this paper, we present an optimal shape design method for a dielectric microlens which is used to focus an incoming infrared plane wave in wideband, by exploiting the finite difference time domain (FDTD) technique and the topology optimization technique. Topology optimization is a scheme to search an optimal shape by adjusting the material properties, which are design variables, within the design space. And by introducing the adjoint variable method, we can effectively calculate a derivative of the objective function with respect to the design variable. To verify the proposed method, a shape design problem of a dielectric microlens is tested when illuminated by a transverse electric (TE)-polarized infrared plane wave. In this problem, the design variable is the dielectric constant within the design space of a dielectric microlens. The design objective is to maximally focus the incoming magnetic field at a specific point in wideband.

가장 효율적인 음향 압축기의 튜브형상 (Tube Shape for Highly Efficient Sonic Compressor)

  • 전영두;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1455-1460
    • /
    • 2000
  • When a tube is oscillated at a resonant frequency, acoustic variables such as density, velocity, and pressure undergo very large perturbation, often described as nonlinear oscillation. In order to analyze these phenomena, nonlinear governing equation has been drived and solved numerically. Numerical simulations were accomplished to study the effect of the tube shape on the maximum pressure we can obtain. The tubes of cylindrical, conical, and cosine-shape, which have same volume and length, were investigated. Results show that the resonant frequency and patterns of pressure waves strongly depend on not only the tube shape but also the amplitude of driving acceleration. The degree of non-linearity of wave patterns was also measured by the newly defined nonlinear energy ratio of the pressure signals. It was found that the 1/2 cosine-shape tube is more suitable to induce high compression ratio than other shapes.

  • PDF

MIRA model 후미의 저저항 최적 설계 (Optimal Design for the Low Drag Tail Shape of the MIRA Model)

  • 김욱;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.67-74
    • /
    • 1998
  • Reducing drag of vehicles are the main concern for the body shape designers in order to lower fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having lowest drag coefficient which is about $6\%$ lower than that of the original shape has been successfully obtained within number of iterations of the optimal design loop.

  • PDF

유한요소해석과 기하학적 모델링의 연동에 기초한 쉘 곡면의 형상 최적 설계 (Shape Optimization of Shell Surfaces Based on Linkage Framework betweenGeometric Modeling and Finite Element Analysis)

  • 김현철;노희열;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1328-1333
    • /
    • 2003
  • In the present study, an integrated framework of geometric modeling, analysis, and design optimization is proposed. Geometric modeling is based on B-spline surface representation. Geometrically-exact shell finite element is implemented in analysis module. Control points of the surface are selected as design variables for optimization, which can make the interaction easier between analysis and surface representation. Sequential linear programming(SLP) is adopted for the shape optimization of surfaces. For the computation of shape sensitivities, semi-analytical method is used. The developed integrated framework should serve as a powerful tool for the geometric modeling, analysis, and shape design of surfaces.

  • PDF

자기부상열차 계측 신호를 이용한 궤도 조인트 부 형상 추정 (Estimation of Rail Joint Shape Using Signals Available in a MagLev Train)

  • 노명규;송인형;남성규;박영우;강흥식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.622-624
    • /
    • 2014
  • A maglev train records a host of physical variables such as gaps, voltages and currents for suspension control and monitoring purposes. These data available from a maglev contains wealth of information that can be explored for various uses. One possible of such application is to use the gap data to estimate the shape of the rail, especially at the joints where rails are connected. The eddy current sensors that measure the gap between the rail and the car body produce large peaks around the joints. The suspension controller discards these peaks. Since the shape of the peaks is related to the joint, however, these peaks can be utilized to estimate the shape of the joints. In this paper, we present preliminary results on estimating the joint shape using the peak data. The results show that the approach is promising, albeit several technical difficulties to overcome.

  • PDF