• Title/Summary/Keyword: Shape parameter

Search Result 1,331, Processing Time 0.027 seconds

Behavior of Columns Due to Variation of Performance Influencing Factors Based on Performance Based Design (성능기반설계에 기초한 성능영향인자 변화에 따른 기둥의 거동분석)

  • Yun, Sung-Hwan;Choi, Min-Choul;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 2010
  • The performance evaluation of reinforcement concrete structure is carried out as a function of the following performance influencing factors: (1) the strength of concrete, (2) longitudinal reinforcement, (3) transverse reinforcement, (4) aspect ratio, and (5) axial force. With various values of the five parameters, eigenvalue analysis and non-linear static analysis were performed to investigate the structural yield displacement, yield basis shear force, and static performance of ductility ratio. In addition, the performance evaluation is carried out according to the modified capacity spectrum method (FEMA-440) using the results of non-linear static analysis, and the effect of each parameter on performance point is analyzed. Based on the result of eigenvalue analysis and non-linear static analysis indicates, that the natural period and the ductility ratio are affected more by the structural properties than the material properties. In case of the analysis of the criterion of performance points, the effect of section shape is one of the important factors together with natural period and ductility ratio.

Accelerated Life Prediction on Tensile Strength of Oil Resistance HNBR (내유성 HNBR 고무의 인장강도 성능에 대한 가속수명예측)

  • Kim, Kyung Pil;Lee, Yong Seok;Yeo, Yong Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.233-238
    • /
    • 2020
  • Although the interest in NBR has been increasing due to the recent developments of the aerospace sector, there are few reports on HNBR's aeronautical oil, particularly evaluations of the accelerated life of harsh factors. In this study, the tensile strength was adopted as a performance evaluation factor to evaluate the accelerated life of HNBR used in the aviation field. The accelerated stress factor affecting the performance-aging characteristics was defined as temperature. The acceleration stress factor was determined to be temperature, and the result of measuring the tensile strength change over time. The sample for the acceleration condition was taken out of the oven for a certain period and left at room temperature for 24 hours. The dumbbell type 3 specimens were manufactured according to the standard specified in KS M 6518 and were measured the tensile strength, a factor in accelerated life evaluations. The activation energy was 0.895, and the shape parameter was 1.152 using the Arrhenius model. The characteristic life obtained from the tensile strength of the HNBR specimen immersed in aviation oil at 20℃ was 272,256 hours; the average life was 258,965 hours, and the B10 life was 38,624 hours.

A Prospective Cohort Study on the Relationship of Sleep Duration With All-cause and Disease-specific Mortality in the Korean Multi-center Cancer Cohort Study

  • Yeo, Yohwan;Ma, Seung Hyun;Park, Sue Kyung;Chang, Soung-Hoon;Shin, Hai-Rim;Kang, Daehee;Yoo, Keun-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.5
    • /
    • pp.271-281
    • /
    • 2013
  • Objectives: Emerging evidence indicates that sleep duration is associated with health outcomes. However, the relationship of sleep duration with long-term health is unclear. This study was designed to determine the relationship of sleep duration with mortality as a parameter for long-term health in a large prospective cohort study in Korea. Methods: The study population included 13 164 participants aged over 20 years from the Korean Multi-center Cancer Cohort study. Information on sleep duration was obtained through a structured questionnaire interview. The hazard ratios (HRs) and 95% confidence intervals (CIs) for mortality were estimated using a Cox regression model. The non-linear relationship between sleep duration and mortality was examined non-parametrically using restricted cubic splines. Results: The HRs for all-cause mortality showed a U-shape, with the lowest point at sleep duration of 7 to 8 hours. There was an increased risk of death among persons with sleep duration of ${\leq}5$ hours (HR, 1.21; 95% CI, 1.03 to 1.41) and of ${\geq}10$ hours (HR, 1.36; 95% CI, 1.07 to 1.72). In stratified analysis, this relationship of HR was seen in women and in participants aged ${\geq}60$ years. Risk of cardiovascular disease-specific mortality was associated with a sleep duration of ${\leq}5$ hours (HR, 1.40; 95% CI, 1.02 to 1.93). Risk of death from respiratory disease was associated with sleep duration at both extremes (${\leq}5$ and ${\geq}10$ hours). Conclusions: Sleep durations of 7 to 8 hours may be recommended to the public for a general healthy lifestyle in Korea.

Analysis of Wind Velocity Profile for Calculation of Wind Pressure on Greenhouse (온실의 풍압력 산정을 위한 풍속의 수직분포 분석)

  • Jung, Seung-Hyeon;Lee, Jong-Won;Lee, Si-Young;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.135-146
    • /
    • 2015
  • To provide the data necessary to determine the design wind speed for calculating the wind load acting on a greenhouse, we measured the wind speed below 10m height and analyzed the power law exponents at Buan and Gunwi. A wind speed greater than $5m{\cdot}s^{-1}$ is appropriate for calculating the power law exponent necessary to determine the wind speed distribution function according to height. We observed that the wind speed increased according to a power law function with increased height at Buan, showing a similar trend to the RDC and JGHA standards. Therefore, this result should be applied when determining the power law function for calculating the design wind speed of the greenhouse structure. The ordinary trend is that if terrain roughness increases the value of power law exponent also increases, but in the case of Gunwi the value of power law exponent was 0.06, which shows contrary value than that of the ordinary trend. This contrary trend was due to the elevations difference of 2m between tower installed and surrounding area, which cause contraction in streamline. The power law exponent started to decrease at 7 am, stopped decreasing and started to increase at 3 pm, and stopped increasing and remained constant at 12 pm at Buan. These changes correspond to the general change trends of the power law exponent. The calculated value of the shape parameter for Buan was 1.51, confirming that the wind characteristics at Buan, a reclaimed area near the coast, were similar to those of coastal areas in Jeju.

A Study on Optical Properties of Red Tide Algal Species (적조 원격탐사 기술 개발을 위한 적조생물의 광특성 연구)

  • Lee, Nu-Ri;Moon, Jeong-Eon;Ahn, Yu-Hwan;Yang, Chan-Su;Yoon, Hong-Joo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.187-191
    • /
    • 2006
  • This research is about the optical characteristics of algae which is collected from Nam-Hae for basic research of red tide remote sensing technique development 21 kinds of red tide organisms were cultivated to investigate optical characteristics of them in the level of laboratory, and chlorophyll specific absorption coefficient $(a^*)$ and backscattering coefficient $(b_b^*)$ are estimated by using spectrophotometer. Absorption spectrums according to species appeared to range from 0.005 to 0.06 $(m^2/mg)$, and the shapes of spectrums were also different. The range of $b_b^*$ appeared to be $10^{-2}\sim10^{-4}m^2/mg$, which had about 100 times differences between species, and the shape of spectrum have significant difference between species. These results will input as an ocean color model input parameter from ocean color.

  • PDF

Strength Prediction Model of Interior Flat-Plate Column Connections according to Design Parameters (설계변수에 따른 플랫플레이트-기둥 접합부의 강도산정모형)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.405-414
    • /
    • 2006
  • In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of design parameters such as column section shape, gravity load and slab span on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases and gravity load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. And as the slab span loaded with relatively large gravity load increases, the negative moment around the connection increases and therefore the strength of connection against unbalanced moment decreases. By considering the effect of design parameters on the strength of the connections, the effective shear strength to calculate the torsional moment capacity of connection was proposed and the effectiveness of the proposed shear strength was verified.

Development Time and Development Model of the Green Peach Aphid, Myzus persicae (복숭아혹진딧물(Myzus persicae)의 발육과 발육모형)

  • Kim Ji-Soo;Kim Tae-Heung
    • Korean journal of applied entomology
    • /
    • v.43 no.4 s.137
    • /
    • pp.305-310
    • /
    • 2004
  • The development of Myzus persicae (Sulzer) was studied at temperatures ranging from 15 to $32.5^{\circ}C$ under $70{\pm}5\%$ RH, and a photoperiod of 16:8 (L:D). Mortality of 1st-2nd nymph was higher than that of 3rd-4th nymph at the most temperature ranges whereas at high temperature of $32.5^{\circ}C$, more 3-4nymph stage individuals died. The total developmental time ranged from 12.4 days at $15^{\circ}C$ to 4.9 days at $27.5^{\circ}C$, suggesting that higher the temperature, faster the development. However, at higher end temperature ranges of 30 and $32.5^{\circ}C$, the development took 5.0 and 6.3 days, respectively. The lower developmental threshold temperature and effective accumulative temperatures for the total immature stage were $4.9^{\circ}C$ and 116.5 day-degrees. The nonlinear shape of temperature related development was well described by the modified Sharpe and DeMichele model. When the normalized cumulative frequency distributions of developmental times for each life stage were fitted to the three-parameter Weibull function, attendance of shortened developmental times was apparent with pre-nymph, post-nymph, and total nymph stages in descending order. The coefficient of determination $r^2$ ranged between 0.87 and 0.94.

Optimization Techniques for the Inverse Analysis of Service Boundary Conditions in a Porous Catalyst Substrate with Fluid-Structure Interaction Problems (유체 구조 상호작용 문제를 가진 다공성 촉매 담체에서 실동경계조건의 역문제 해석을 위한 최적화 기법)

  • Baek, Seok-Heum;Cho, Seok-Swoo;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1161-1170
    • /
    • 2011
  • This paper presents a solution to the inverse problem for the service boundary conditions of thermal-flow and structure analysis in a catalyst substrate. The exhaust-gas purification efficiency of a catalyst substrate is influenced by the shape parameter, catalyst ingredients and so on and is estimated by the thermal flow uniformity. The formulations of the inverse problem of obtaining the thermal-flow parameters (inlet temperature, velocity, heat of reaction, convective heat-transfer coefficient) and the direct problem of estimating from a given outlet temperature distribution are described. An experiment was designed and the response-surface optimization technique was used to solve the proposed inverse problem. The temperature distribution of the catalyst substrate was obtained by thermal-flow analysis for the predicted thermal-flow parameters. The thermal stress and durability assessments for the catalyst substrate were performed on the basis of this temperature distribution. The efficiency and accuracy of the inverse approach have been demonstrated through the achievement of good agreement between the thermal-flow response surface model and the results of experimental vehicle tests.

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.67-75
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit panicle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20$^{\circ}$~40$^{\circ}$. In condition that the loading angle is 20$^{\circ}$, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than I mm and loading rate less than 0.01 mm/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF