• 제목/요약/키워드: Shape optimal design

검색결과 1,110건 처리시간 0.029초

신경망을 이용한 정밀 베벨기어의 온간단조 예비성형체 설계 (Preform Design of the Bevel Gear for the Warm Forging using Artificial Neural Network)

  • 김동환;김병민
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.36-43
    • /
    • 2003
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. So, the design parameters related preform shape such as aspect ratio and chamfer length having an influence the formability of forged product are analyzed. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing preform shape in metal forming process.

의자 다리 부재에 대한 형상 최적 설계 (Shape Optimal Design for the Leg Parts of Chair)

  • 강성수;정영수
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.735-739
    • /
    • 2011
  • In this study, a chair with 5 or 6 legs was designed using the commercial program CATIA V5 in order to efficiently design considering the load conditions. In addition, the stress analysis and shape optimization were carried out using ANSYS Workbench for the chair consisting of stainless steel, aluminum alloys, magnesium alloys and structural steel. As a result, a chair with five legs showed the maximum equivalent stress at the end of the edge of the wheel parts and on the other hand, a chair with six legs showed the maximum equivalent stress at the corner of the connecting parts of the pillar and leg. In addition, the material and the weight was reduced by shape optimization for the chair model with 5 legs and maximum equivalent stress for stainless steel was found that greatly relaxed, compared with that of before shape optimization model.

자동차 클러치 페달 암의 무게 최소화를 위한 형상 최적설계 (Shape Optimal Design to Minimize the Weight of the Pedal Arm of an Automotive Clutch)

  • 이부윤;이현우
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.269-276
    • /
    • 2007
  • Optimal thickness and shape of the pedal arm of an automotive clutch is determined, using the numerical optimization technique, by solving the size and shape optimization problems to minimize its weight. For the optimization problems, two cases of stress and displacement constraints are considered: one from the vertical, and the other from the transverse stiffness test condition. The result of the transverse case is shown to be more conservative than that from the vertical case, being determined as the final optimum.

자기기록장치의 위상최적설계 (Topology optimal design of magnetic recording system)

  • 박순옥;최재석;유정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.618-621
    • /
    • 2008
  • The magnetic recording system shows the difference of the magnetic recording density according to the direction of the magnetic field. The yoke shape of the recording system affects the magnetic field direction; therefore, the recording density may be raised by changing the shape. This paper intends not only to increase the magnetic flux density of the record region but also to reduce the recording loss of a specific region through the simultaneous design of the yoke and the magnet. The recording loss can be reduced by minimizing the magnetic flux of the adjacent area to the recording region. The topology optimization method is used to obtain the optimal shape both of the yoke and the magnet. And the commercial package, Maxwell is used to verify the result.

  • PDF

승용차용 브레이크 Tube-End의 최적설계에 관한 연구 (A Study on the Optimal Design of the Brake Tube-End for Automobiles)

  • 한규택;박정식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.53-57
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube-end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube-end is peformed by hydraulic press forming machine. In this paper, the forming processes of tube-end for automobile is analyzed and designed to make the optimal form of brake tube-end. Also, finite element analysis has been carried out using DEFORM-3D$\^$TM/ to predict the optimal shape of brake tube-end and the results obtained showed the optimal length between punch and chuck is 1.0 ∼ 1.2mm. The shape of tube-end is in good agreement with the finite element simulations and the experimental results.

  • PDF

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

크리깅 메타모델과 유전자 알고리즘을 이용한 초고압 가스차단기의 형상 최적 설계 (Shape Optimization of High Voltage Gas Circuit Breaker Using Kriging-Based Model And Genetic Algorithm)

  • 곽창섭;김홍규;차정원
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.177-183
    • /
    • 2013
  • We describe a new method for selecting design variables for shape optimization of high-voltage gas circuit breaker using a Kriging meta-model and a genetic algorithm. Firstly we sample balance design variables using the Latin Hypercube Sampling. Secondly, we build meta-model using the Kriging. Thirdly, we search the optimal design variables using a genetic algorithm. To obtain the more exact design variable, we adopt the boundary shifting method. With the proposed optimization frame, we can get the improved interruption design and reduce the design time by 80%. We applied the proposed method to the optimization of multivariate optimization problems as well as shape optimization of a high - voltage gas circuit breaker.

전달 일률 계수 최대화를 위한 1차원 도파관 형상 설계 (One-dimensional Waveguides Shape Design far Transmission Power Coefficient Maximization)

  • 이일규;이중석;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.481-482
    • /
    • 2008
  • This investigation presents a method to design an optimal shape of a matching waveguide connecting two waveguides having different impedances. The design objective is to maximize power transmission through the waveguide system. When an incident wave impinges on an elastic waveguide system consisting of waveguides of different impedances, all of the incident wave power may not pass through due to the mechanical impedance. Therefore, the maximization of the transmitted power through a waveguide difficult to achieve without a systematic design method. In this work, the optimal shape design of a matching waveguide connecting two waveguides of different impedances is formulated as a shape optimization problem. If the material of the matching waveguide is given, its shape is the only parameter controlling the transmission power. Relatively simple one dimensional elastic wave transmission problems will be considered in this work, but the underlying methodology and the related physics can be clearly demonstrated. The influences of initial configurations as well as the target frequencies on the optimized shapes will be also investigated.

  • PDF

Shape Optimization of Damaged Columns Subjected to Conservative and Non-Conservative Forces

  • Jatav, S.K.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.20-31
    • /
    • 2014
  • This paper deals with the development of a realistic shape optimization of damaged columns that are subjected to conservative and non-conservative forces, using the Genetic Algorithm (GA). The analysis is based on the design of the most optimized shape of the column under the constraint of constant weight, considering the Static, Vibrational, and Flutter characteristics. Under the action of conservative and non-conservative longitudinal forces, an elastic column loses its stability. A numerical analysis based on FEM has been performed on a uniform damaged column, to compute the fundamental buckling load, vibration frequency, and flutter load, under various end restraints. An optimization search based on the Genetic Algorithm is then executed, to find the optimal shape design of the column. The optimized column references the one having the highest buckling load, highest vibration frequency, and highest flutter load, among all the possible shapes of the column, for a given volume. A comparison is then made between the values obtained for the optimized damaged column, and those obtained for the optimized undamaged column. The comparison reveals that the incorporation of damage in the column alters its optimal shape to only a certain extent. Also, the critical load and frequency values for the optimized damaged column are comparatively low, compared with those obtained for the optimized undamaged column. However, these results hold true only for moderate-intensity damage cases. For high intensity damage, the optimal shape may not remain the same, and may vary, according to the severity of damage.

세장비가 큰 사각케이스 성형 공정에서의 인공신경망을 적용한 초기 블랭크 형상 최적설계 모델 개발 (A Development of Optimal Design Model for Initial Blank Shape Using Artificial Neural Network in Rectangular Case Forming with Large Aspect Ratio)

  • 곽민준;박지우;박근태;강범수
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.272-281
    • /
    • 2020
  • As the thickness of mobile communication devices is getting thinner, the size of the internal parts is also getting smaller. Among them, the battery case requires a high-level deep drawing technique because it has a rectangular shape with a large aspect ratio. In this study, the initial blank shape was optimized to minimize earing in a multi-stage deep drawing process using an artificial neural network(ANN). There has been no reported case of applying artificial neural network technology to the initial blank optimal design for a square case with large aspect ratio. The training data for ANN were obtained though simulation, and the model reliability was verified by performing comparative study with regression model using random sample test and goodness-of-fit test. Finally, the optimal design of the initial blank shape was performed through the verified ANN model.