• 제목/요약/키워드: Shape of displacement

검색결과 1,054건 처리시간 0.03초

포스트텐션에 의해 시공된 공간 트러스의 거동 (Behaviour of Space Truss Erected by Post-tensioning)

  • 김진우
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.204-209
    • /
    • 2000
  • This paper suggests that post-tensioned and dome-shaped space truss formed by post-tersionong is easy to fabricate in construction process. In particular, a laboratory model is used to show how a flat space truss system can be transformed into a dome-shaped space truss by means of post-tensioning. There are some diserpancy in vertical displacement of the dxperiment and theoretical analysis for space truss. Nonlinear analysis is used to predict the final shape shape of the space truss, the experiments tndicates that this construction method can offer economy over traditional methods. In addition, the analysis indicates that when all the sxisting mechanisms are controlled, the nonlinear finite element method is more reliable way to predict the shape of the dome-shaped space truss than the linear analysis.

  • PDF

2차원 연속 Scanning을 이용한 진동모드 해석 (The Analysis of Mode Shape using 2 Dimensional Continuous Scanning)

  • 윤상열;류제길;박기환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.531-535
    • /
    • 2000
  • If the displacement of the structure is obtained by integrating the signal from accelorometer and laser, the vibration mode can be examined. This conventional method, however, has the disadvantage of the necessity of multiple accelerometers and many data processing steps such as frequency response function(FRF). In order to get smooth mode shape, we should also use algorithms of cubic spline or others. In this paper, we propose a method which gets the mode shape by using the velocity signal directly obtained from the plane scanning. In this method, we just use coefficients and phases for specific frequency.

  • PDF

강제대류 열전달을 이용한 형상기억합금 작동기 (Forced Convection heated and cooled SMA(Shape Memory Alloy) Actuator)

  • 전형열;김정훈;박응식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.100-103
    • /
    • 2005
  • This work discusses the numerical analysis, the design and experimental test of the SMA (Shape Memory Alloy) actuator along with its capabilities and limitations. Convection heating and cooling using water actuate the SMA element of the actuator. The fuel such as propane, having a high energy density, is used as the energy source for the SMA actuator in order to increase power and energy density of the system, and thus in order to obviate the need for electrical power supplies such as batteries. The system is composed of a pump, valves, bellows, a heater (burner), control unit and a displacement amplification device. The actuation frequency is compared with the prediction obtained from numerical analysis. For the designed SMA actuator system, the results of numerical analysis were utilized in determining design parameters and operating conditions.

  • PDF

NURBS를 이용한 캠 기구의 역설계에 관한 연구 (A Study on Reverse Design of Cam Mechanism using NURBS)

  • 김상진;신중호;김대원;윤호업
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.920-924
    • /
    • 2002
  • This paper presents the reverse design of a cam mechanism using NURBS(Nonuniform Rational B-spline curve). Cam is very difficult to make the accurate shape on the design and the manufacture. Because the cam shape is commonly made in order to move in special functions. The reverse design can be used to check accuracy between the designed data and the manufactured data of the cam shape and also reproduce the cam without the design data. The reverse design procedures consist of motion analysis and curve fitting. The motion analysis is used the central difference method and the relative velocity method to find the displacement and velocity. The curve fitting is used NURBS to develope the whole curve. The central difference method is derived in the 3 dimensional space.

  • PDF

서브필드계조방식 디스플레이 장치를 위한 컨투어 쉐이프 매칭 기반의 모션벡터 추정 (Contour Shape Matching based Motion Vector Estimation for Subfield Gray-scale Display Devices)

  • 최임수;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.327-328
    • /
    • 2007
  • A contour shape matching based pixel motion estimation is proposed. The pixel motion information is very useful to compensate the motion artifact generated at the specific gray level contours in the moving image for subfield gray-scale display devices. In this motion estimation method, the gray level boundary contours are extracted from the input image. Then using contour shape matching, the most similar contour in next frame is found, and the contour is divided into segment unit. The pixel motion vector is estimated from the displacement of the each segment in the contour by segment matching. From this method, more precise motion vector can be estimated and this method is more robust to image motion with rotation or from illumination variations.

  • PDF

고강도 열연재의 홀 플랜징시 립 형상이 플랜정성에 미치는 효과 (Effect of Lip Shape on the Hole Flangeability of High Strength Steel Sheets)

  • 김정운;김봉준;문영훈
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.147-152
    • /
    • 2002
  • Effect of lip shape on the hole flangeability of high strength steel sheets is investigated. Circular plates of various hole sizes are tested and the variation of lip length as well as the variation of thickness on the sectional views of the finished lip were studied. The conventional hole flanging process is limited to a certain limit hole diameter below which failure will ensue during the hole expansion. The intention of this work is to examine the effect of lip shape on the flangeability of TRIP steel and Ferrite-Bainite duplex steel and find out major parameters which can affect flanging shape of high strength hot rolled steels. Over the ranges of conditions investigated, the minimum hole diameter of F+B steel is better than TRIP steel. while, the lip-shape accuracy of TRIP steel is better than that of F+B steel. although the tensile strength and elongation of %P steel are superior than those of Ferrite-Bainite duplex steel, the flangeability is found to be not so strongly sensitive to the tensile properties but sensitive to displacement on the circumferential direction of hole edge.

에폭시 접착제 접합구조물의 강도향상을 위한 접착부 형상설계 (Shape Design of Adhesive Joints for Strength Improvement of Epoxy Adhesive Structures)

  • 서도원;김효진;임재규
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.783-790
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5 mm/min. As a result, the load-displacement distribution was shown a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

Optimum design of shape and size of truss structures via a new approximation method

  • Ahmadvand, Hosein;Habibi, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제76권6호
    • /
    • pp.799-821
    • /
    • 2020
  • The optimum design of truss structures is one of the significant categories in structural optimization that has widely been applied by researchers. In the present study, new mathematical programming called Consistent Approximation (CONAP) method is utilized for the simultaneous optimization of the size and shape of truss structures. The CONAP algorithm has already been introduced to optimize some structures and functions. In the CONAP algorithm, some important parameters are designed by employing design sensitivities to enhance the capability of the method and its consistency in various optimum design problems, especially structural optimization. The cross-sectional area of the bar elements and the nodal coordinates of the truss are assumed to be the size and shape design variables, respectively. The displacement, allowable stress and the Euler buckling stress are taken as the design constraints for the problem. In the proposed method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the sequential quadratic programming (SQP) algorithm. Several truss structures are designed by employing the CONAP method to illustrate the efficiency of the algorithm for simultaneous shape and size optimization. The optimal solutions are compared with some of the mathematical programming algorithms, the approximation methods and metaheuristic algorithms those reported in the literature. Results demonstrate that the accuracy of the optimization is improved and the convergence rate speeds up.

커스프균열형 강체함유물의 열응력 세기계수에 관한 연구 (Thermal Stress Intensity Factors for Rigid Inclusions of Cusp Crack Shape)

  • 이강용;최흥섭
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.497-504
    • /
    • 1988
  • 본 연구에서는 트랙션이 없는 커스프 균열에 적용한 방법을 확장하여 무한대 에서 균일열유동을 받는 무한체내에 하이포사이클로이드형(hypocycloid type), 대칭이 기형(symmetric airfoil type), 대칭입술형(symmetric lip type) 강체 함유물이 존재 하고 그 표면은 단열되거나 상대온도가 영으로 주어지는 경우에 대해서 열응력세기계 수(thermal stress intensity factor이하에서 TSIF로 표기함)를 유도하고자 한다.