• 제목/요약/키워드: Shape of displacement

검색결과 1,048건 처리시간 0.027초

가진력과 단면형상 변화에 따른 외팔보 감쇠 진동의 민감도 해석 (Sensitivity Analysis of Dynamic Response by Change in Excitation Force and Cross-sectional Shape for Damped Vibration of Cantilever Beam)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.11-17
    • /
    • 2021
  • This paper describes the time rate of change of dynamic response of a cantilever beam inserted with a damping element, such as bonding, which is excited under a general force at various locations. A sensitivity analysis was performed in a finite element model to show that two types of second-order algebraic governing equations were used to predict the rate of change of dynamic displacement: one is related to the modal coordinate linked to a physical coordinate, and the other to the design parameter of the time rate of change of displacement. The sensitivity differential equation formulation includes more complicated terms compared with that of the undamped cantilever beam. The sensitivities of the dynamic response were observed by changing the location of the excitation force, displacement extraction, and cross-sectional area of the beam. The analytical results obtained by this suggested theory showed a relatively good agreement when compared with those obtained using the commercial finite element program. The suggested analysis procedure enables the prediction of the response sensitivity for any finite element model of the dynamic system.

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.

Sawtooth Fingered Comb Drive Actuator for Greater Displacement

  • Ha Sang Wook;Oh Sang-Woo;Hahm Ju-Hee;Kim Kwon Hee;Pak James Jungho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권6호
    • /
    • pp.264-269
    • /
    • 2005
  • The electrostatic comb drive actuator is one of the main building blocks in the field of micro electro-mechanical systems (MEMS). Most of the comb actuators presented previously have fingers that are rectangular in shape which produce a stable, constant force output during actuation. The use of sawtooth fixed fingers in a comb drive, which were presumed to produce an increasing force output with displacement due to the increased number of regions where fringing force, the driving force of comb actuators, appear. The dimensions of the sawtooth were derived from finite element analysis (FEA) of simplified finger models with sawtooth type fingers of various dimension and were compared to the rectangular finger model that showed that the sawtooth type fingers have $7\~9$ times stronger driving force. Finally, comb drive actuators with sawtooth type and rectangular fingers were fabricated and although the gap was bigger, the comb actuator with sawtooth type fingers showed about 1.7 times greater electrostatic force than the one with rectangular fingers at equal driving voltages. In conclusion, using the proposed sawtooth type comb fingers in a comb drive makes it possible to increase its displacement or reduce the driving voltage.

Extended artificial neural network for estimating the global response of a cable-stayed bridge based on limited multi-response data

  • Namju Byun;Jeonghwa Lee;Keesei Lee;Young-Jong Kang
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.235-251
    • /
    • 2023
  • A method that can estimate global deformation and internal forces using a limited amount of displacement data and based on the shape superposition technique and a neural network has been recently developed. However, it is difficult to directly measure sufficient displacement data owing to the limitations of conventional displacement meters and the high cost of global navigation satellite systems (GNSS). Therefore, in this study, the previously developed estimation method was extended by combining displacement, slope, and strain to improve the estimation accuracy while reducing the need for high-cost GNSS. To validate the proposed model, the global deformation and internal forces of a cable-stayed bridge were estimated using limited multi-response data. The effect of multi-response data was analyzed, and the estimation performance of the extended method was verified by comparing its results with those of previous methods using a numerical model. The comparison results reveal that the extended method has better performance when estimating global responses than previous methods.

The linear-elastic stiffness matrix model analysis of pre-twisted Euler-Bernoulli beam

  • Huang, Ying;Zou, Haoran;Chen, Changhong;Bai, Songlin;Yao, Yao;Keer, Leon M.
    • Structural Engineering and Mechanics
    • /
    • 제72권5호
    • /
    • pp.617-629
    • /
    • 2019
  • Based on the finite element method of traditional straight Euler-Bernoulli beams and the coupled relations between linear displacement and angular displacement of a pre-twisted Euler-Bernoulli beam, the shape functions and stiffness matrix are deduced. Firstly, the stiffness of pre-twisted Euler-Bernoulli beam is developed based on the traditional straight Euler-Bernoulli beam. Then, a new finite element model is proposed based on the displacement general solution of a pre-twisted Euler-Bernoulli beam. Finally, comparison analyses are made among the proposed Euler-Bernoulli model, the new numerical model based on displacement general solution and the ANSYS solution by Beam188 element based on infinite approach. The results show that developed numerical models are available for the pre-twisted Euler-Bernoulli beam, and which provide more accurate finite element model for the numerical analysis. The effects of pre-twisted angle and flexural stiffness ratio on the mechanical property are investigated.

외상성 상악동 안구탈출의 치험례: 증례보고 (Traumatic Displacement of the Globe into the Maxillary Sinus: Case Report)

  • 임찬수;강동희
    • Archives of Plastic Surgery
    • /
    • 제34권4호
    • /
    • pp.524-527
    • /
    • 2007
  • Purpose: Globe displacement due to a blowout fracture is a rare clinical phenomenon. The authors present reduction of a globe displacement to the maxillary sinus due to trauma suffered in a fall and the reconstruction of a large defect left in the medial and inferior orbit. Methods: A 39-year-old male patient was unable to open his left eye after being struck on the periorbital area by a metal edge. Laceration was not noted in that area but we were unable to observe the intraorbital globe. A facial computed tomography (CT) scan showed that the globe was displaced through the maxillary sinus. A transconjunctival approach was used to access the infraorbital margin and the globe entrapped in the inferior margin of the orbit was successfully reduced. A large defect in the medial and inferior orbit was reconstructed using a graft from the iliac bone. Results: In 5 months after the operation, no atrophy of the globe was seen. Both sides retained a similar shape. A satisfactory functionality outcome in terms of improved extraocular muscle movement, and a satisfactory aesthetical outcome were achieved. Conclusion: The authors report the reduction of a globe displaced to the maxillary sinus following a fall and the reconstruction of the large defect left in the medial and inferior orbit.

전면부 변형형태에 따른 보강토 벽체 구조물의 파괴거동에 관한 연구 (A Study on the Failure Behavior of the Reinforced Earth Wall Structures according to the Deformed Types of the Face)

  • 김준석;이상덕
    • 한국지반공학회논문집
    • /
    • 제15권4호
    • /
    • pp.167-173
    • /
    • 1999
  • 본 논문에서는 전면부 변형형태에 따른 보강토옹벽의 파괴거동을 탄소봉 모형 실험장치를 이용하여 실험적으로 연구하였다. 실험에서는 모형 보강토 벽체의 전면판 변형 형태를 상부변형, 수평변형, 하부변형 등 3종류로 나누어 실시하였다. 변형된 벽체의 파괴선을 육안으로 확인하기 위하여 사진촬영 기법을 이용하였다. 실험결과 상부변형의 조건일 경우 파괴선은 포물선의 형태를,수평이동의 조건일 경우 파괴선은 매우 큰 원호의 형태를 보였으며, 하부변형의 조건일 경우 파괴선은 직선화된 대수나선형태를 보였다. 현재 설계에 많이 사용되고 있는 복합중력식 설계법의 가상파괴선은 하부변형 조건의 파괴선과 가장 유사한 형태를 보였다.

  • PDF

동적 변위민감도 해석을 이용한 고층 RC 골조구조물의 정량적인 횡변위 제어 방안 (Quantitative Lateral Drift Control of RC Tall Frameworks using Dynamic Displacement Sensitivity Analysis)

  • 이한주;김호수
    • 한국공간구조학회논문집
    • /
    • 제6권3호
    • /
    • pp.103-110
    • /
    • 2006
  • 본 연구에서는 지진하중을 받는 고층 RC 골조구조물의 횡변위를 정량적으로 제어할 수 있는 방안을 제시한다. 이를 위해 수학적인 일반성을 가지면서 큰 규모의 문제도 효율적으로 다룰 수 있는 근사화 개념을 도입하여 횡변위 구속조건식을 설정한다. 아울러 구조부재의 단면특성 관계식을 설정함으로써 설계변수의 수를 줄여주고, 초기에 주어진 단면형상이 최적설계 과정동안 계속 유지된다는 가정을 이용하여 최적설계결과에서 구해진 단면특성에 따라 부재단면크기를 산출하는 방안을 강구한다. 특히 근사화된 횡변위구속조건식을 정식화 하기 위해 동적 변위민감도해석 방안이 고려된다. 이와 같이 제시된 동적 강성최적설계 기법의 효용성을 검토하기 위해 10층과 50층 규모의 삼차원 RC 골조구조물 모델이 고려된다.

  • PDF

Acute Bone Remodeling after Reduction of Nasal Bone Fracture on Computed Tomography Imaging

  • Lee, Bong Moo;Han, Dong Gil
    • 대한두개안면성형외과학회지
    • /
    • 제15권2호
    • /
    • pp.63-69
    • /
    • 2014
  • Background: A number of studies have reported complication after reduction of nasal bone fractures. Among complicated cases, some showed improvement in shape of the nose with passage of time. Therefore, we examined these changes using computed tomography (CT) images taken over intervals. Methods: CT scans of 50 patients with new nasal bone fractures were reviewed, and the images were compared amongst preoperative, immediately postoperative, and one month scans. Changes in nasal bone shape, were evaluated based on the angle of nasal bone arch between the nasal bone and frontal process of maxilla, overall shape of arch, mal-alignment of fracture segments involving bony irregularity or bony displacement. These evaluations were used to separate postoperative outcomes into 5 groups: excellent, good, fair, poor, and very poor. Results: Immediate postoperative nasal shape was excellent in 10 cases, good in 31 cases, fair in 8 cases, and poor results in a single case. Postoperative shape at one month was excellent in 37 cases, good in 12 cases, fair in a single case. Conclusion: The overall shape of nasal bone after fracture reduction tended to improve with passage of time.