• Title/Summary/Keyword: Shape of cutting edge

Search Result 75, Processing Time 0.028 seconds

Fabrication of Micro/nanoscale Cutting Tool Geometry of Single Crystal Diamond Tool by Focused Ion Beam (집속이온빔(Focused Ion Beam)에 의한 단결정 다이아몬드 공구의 마이크로/나노스케일 절삭공구 형상 제작)

  • Baek, Seung Yub;Jang, Sung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.207-213
    • /
    • 2014
  • A study was carried out to fabricate the cutting tool geometry with micro/nanoscale on the single crystal diamond tool by using the FIB. The FIB technique is an ideal tool for TEM sample preparation that allows for the fabrication of electron-transparent foils. The FIB is appropriate techniques to sample and subsequently define the chemical composition and the structural state of mineral inclusion on the micro/nanoscale. The combination of FIB with a SEM allows for 3D information to be obtained from samples including 3D imaging. Cutting strategies were demonstrated to improve the performance of cutting tool geometry and to generate high aspect ratio micro cutting tool. A finely focused beam of 30keV Ga+ ions was used to mill cutting tool shapes for various micro patterns. Therefore FIB sputtering is used to shape a variety of cutting tools with dimensions in the $1-5{\mu}m$ range and cutting edge radii of curvature of under 50nm.

A Study on Cutting Performance of the BTA Drilling (BTA드릴가공의 절삭성능에 관한 연구)

  • 장성규;김순경;전언찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.65-72
    • /
    • 1998
  • The BTA drilling chip is better for deep hole drilling than other self-piloting with pad drilling chips because the large length to diameter ratio allows a unique cutting force dispersion and better supplies the high pressure fluid. Therefore the BTA is useful for many tasks, such as coolant hole drilling of large scale dies, as well as tube seat drilling, which is essential for the heat exchanger, and variable component drilling for automobiles. Deep hole drilling has several significant problems, such as hole deviation, hole over-size, circularity, straightness, and surface roughness. The reasons for these problems, which often result in quality short comings, are an alignment of the BTA drilling system and the unbalance of cutting force by work piece and tool shape. This paper analyzes the properties through an experiment which com¬pared single-edge BTA drills with multiple-edge BTA drills, as well as the shapes of the tools to cause an unbalance of cutting force, and its effect on the precision of the worked hole. Conclusions are as follows. 1) In SMSSC drilling, 60m/min of BTA with single and multi-edged tools proved the best cutting condition and the lowest wear character. 2) The roundness got a little worse as cutting speed was increased, but surface roughness was hot affected. 3) It was proved that the burnishing torque of both drills approached 26%. which is almost the same as the 24% insisted on by Griffiths, and the dispersion characteristic of the multi-edged BTA drill proved better than the single-edge BTA drill.

  • PDF

Machining Precision according to the Change of Feedrate when Ball Endmilling of Semisphere Shape (볼 엔드밀에 의한 반구 가공시 이송속도 변화에 따른 가공정밀도)

  • 임채열;우정윤;김종업;왕덕현;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.930-933
    • /
    • 2000
  • Experimental study was conducted for finding the characteristics of machining precision according to the change of feedrate when ball endmilling of semisphere shape. The values of tool deflection and cutting force were measured simultaneously by the systems of eddy-current sensor and dynamometer. The machining precision was analyzed by roundness values, which were deeply relating with tool deflection and forces. the roundness was decreased in down-milling than in up-milling for each feedrate. As the cutting edge is moved to radius direction on the tool path, the tool deflection and the cutting force were seemed to be decreased. As the tool path was moved downward, the values of roundness, cutting force and tool deflection were obtained better ones. When compared the values of roundness, cutting force and tool deflection for different feedrate, the best machining accuracy was obtained at feed rate of 90mm/min in down-milling.

  • PDF

A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect (크기효과가 고려된 미소절삭시의 온도 및 응력특성에 관한 유한요소해석)

  • 김국원;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.128-139
    • /
    • 1998
  • In this paper, a finite element method for predicting the temperature and stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper(OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force was found to agree with the experiment result with the consideration of friction characteristics on chip-tool contact region. Because of considering the tool edge radius, this cutting model using the finite element method can analyze the micro-machining with the very small depth of cut, almost the same size of tool edge radius, and can observe the 'size effect' characteristic. Also the effects of temperature and friction on micro-machining were investigated.

  • PDF

Form Error Prediction in Side Wall Milling Considering Tool Deflection (측벽 엔드밀 가공에서 공구 변형을 고려한 형상 오차 예측)

  • 류시형;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.43-51
    • /
    • 2004
  • A method for form error prediction in side wall machining with a flat end mill is suggested. Form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.

Study on Influence of Process Parameter on Stretch Flangeability of Steel Sheet (판재 신장플랜지성에 미치는 전단 공정 인자의 영향 연구)

  • S.S. Han;H.Y. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.61-66
    • /
    • 2023
  • The quality of the sheared surface affects the stretch flangeability of steel sheet. The quality of sheared surface is influenced by several process factors such as die clearance, shape of cutting edge, use of counter punch, and shear. In this paper, the influence of these shearing process factors on the stretch flangeability of the HSS (DP980) was analyzed through a shearing and a stretch flangeability test. When the die clearance was 10%, the effect of these shearing process factors on the stretch flangeability was the greatest, and the use of an acute angle blade was found to be more advantageous in the stretch flangeability than a right angle blade. It was found that the stretch flangeability was improved when active bending was applied during shearing.

A Study on Mold Machining for Bearing Rubber Seal by Formed Tool. (총형공구를 이용한 고정밀 베어링 Rubber seal 금형가공에 관한 연구)

  • 김도형;김연술;이희관;노상흡;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1807-1810
    • /
    • 2003
  • The formed tool is used to machine the unique shape of rubber seal for geometrical shaping and reduction of cutting time. The bearing rubber seal produced by hot press forming has complex geometry for the complex geometrical shape to prevent leakage of lubricant oil and influx of the dust effectively. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining mold of the seal. In this paper, It is performed for selection of the formed tool to investigate cutting edge wear, cutting force, and surface quality. Also, an efficient high precision machining is proposed on the experiment data.

  • PDF

Study on mirror-like surface machining of Al alloy with edge form of single crystal diamond tools (천연 다이아몬드 인선형태에 의한 Al 합금의 경면절삭에 관한 연구)

  • 김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1515-1522
    • /
    • 1990
  • Ultra precision cutting should be satisfied with two conditions of Mirror Like and shape grade, and especially Mirror Like depends on surface roughness. In this study, in order to develop Mirror Cutting for Al alloy, this was done with edge form of single crystal diamond tool divided into R type and S type. Surface roughness machined by S type tool is more satisfactory than by R type tool, being the lowest value of 13.8nm. In addition, Mirror surface can reach above 90% of reflection rate by both R type and S type tool, but machined surface by R type tool has much more fine fracture portions rather than by S type tool. Even though feed rate decreases from 5.mu.m to 1.mu.m, surface roughness doesn't show improvement.

Development of Algorithms for Accuracy Improvement in Transfer-Type Variable Lamination Manufacturing Process using Expandable Polystrene Foam (VLM-ST공정의 정밀도 향상을 위한 알고리즘 개발)

  • 최홍석;이상호;안동규;양동열;박두섭;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.212-221
    • /
    • 2003
  • In order to reduce the lead-time and cost, the technology of rapid prototyping (RP) has been widely used. A new rapid prototyping process, transfer-type variable lamination manufacturing process by using expandable polystyrene foam (VLM-ST), has been developed to reduce building time, apparatus cost and additional post-processing. At the same time, VLM Slicer, the CAD/CAM software for VLM-ST has been developed. In this study, algorithms for accuracy improvement of VLM-ST, which include offset and overrun of a cutting path and generation of a reference shape are developed. Offset algorithm improves cutting accuracy, overrun algorithm enables the VLM-ST process to make a shape of sharp edge and reference shape generation algorithm adds additional shape which makes off-line lamination easier. In addition, proposed algorithms are applied to practical CAD models for verification.

A Study on the Minimum Scheme of Burr Generation on Working Condition and Specimen Shape for in the Pure Aluminium(A1050) (순알루미늄(A1050)의 가공조건과 시험편 형상에 따른 버어생성의 최소화에 관한 연구)

  • 이광영;서영백;박흥식;전태옥
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.34-40
    • /
    • 1998
  • The burr produced on piece part edges in machining operations must be removed for most parts to function effectively. Although considerable cost have been expended in improving deburring methods, little energy has been applied toward minimizing burrs. This study has been carried out to prevent the burrs produced on pure aluminium under various working condition and specimen shape in turning operations. The computer image processing system was used for measurement of size of burr, such as burr length, burr depth and burr area. The size of burr showed a decreasing tendency with the increase of rake angle and side cutting angle but it increased rapidly with the increase of depth of cut and the cutting speed has no effect on size of burrs. The size of burr rapidly decreased with the increase of edge angle and burrs are not occurred if edge angle is over 80$^{\circ}$.

  • PDF