• Title/Summary/Keyword: Shape file

Search Result 157, Processing Time 0.028 seconds

The instrument-centering ability of four Nickel-Titanium instruments in simulated curved root canals (만곡된 레진 모형 근관에서 4종의 엔진 구동형 니켈-티타늄 기구의 근관 중심율 유지 능력)

  • Ku, Jae-Hoon;Chang, Hoon-Sang;Chang, Seok-Woo;Cho, Hwan-Hee;Bae, Ji-Myung;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.2
    • /
    • pp.113-118
    • /
    • 2006
  • The aim of this study was to evaluate the ability of newly marketed NRT instruments to maintain the original root canal configuration and curvature during preparation in comparison with the three existing instruments in simulated root canals. Simulated canals in resin blocks were prepared with ProFile. K3, ProTaper and NRT instrument (n = 10 canals in each case). Pre- and post-operative images were recorded, and assessment of canal shape was completed with a computer image analysis program. The data were analyzed statistically using the One-way ANOVA followed by Duncan s test. The ability or instruments to remain centered in prepared canals at 1-, 2-mm levels was significantly better in ProFile groups than in other groups (p < 0.05). The change of centering ratio in NRT groups at 5-mm level was significantly greater than ProFile group and at 6- and 7-mm level than all other groups (p < 0.05). Although the NRT system was comparable to other systems in regards to its ability to maintain the canal configuration of apical portion, this system was more influenced by the mid-root curvature due to its stainless-steel files for coronal preflaring.

Enhancing Query Efficiency for Huge 3D Point Clouds Based on Isometric Spatial Partitioning and Independent Octree Generation (등축형 공간 분할과 독립적 옥트리 생성을 통한 대용량 3차원 포인트 클라우드의 탐색 효율 향상)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.481-486
    • /
    • 2014
  • This study aims at enhancing the performance of file-referring octree, suggested by Han(2014), for efficiently querying huge 3D point clouds, acquired by the 3D terrestrial laser scanning. Han's method(2014) has revealed a problem of heavy declining in query speed, when if it was applied on a very long tunnel, which is the lengthy and narrow shaped anisometric structure. Hereupon, the shape of octree has been analyzed of its influence on the query efficiency with the testing method of generating an independent octree in each isometric subdivision of 3D object boundary. This method tested query speed and main memory usage against the conventional single octree method by capturing about 300 million points in a very long tunnel. Finally, the testing method resulted in which twice faster query speed is taking similar size of memory. It is also approved that the conclusive factor influencing the query speed is the destination level, but the query speed can still increase with more proximity to isometric bounding shape of octree. While an excessive unbalance of octree shape along each axis can heavily degrade the query speed, the improvement of octree shape can be more effectively enhancing the query speed than increasement of destination level.

Effect of adaptive movement on durability and working time of twisted file (Adaptive movement가 twisted file의 내구성과 작업 시간에 미치는 영향)

  • Lee, Sang-Ho;Park, So-Ra;Cho, Kyung-Mo;Park, Se-Hee;Kim, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.1
    • /
    • pp.20-26
    • /
    • 2019
  • Purpose: Recently TF-adaptive movement is developed in order to increase the durability of TF files. The purpose of this study was to assess the effects of adaptive movement on durability and performance of twisted files. Materials and Methods: Resin blocks simulating artificial J-shape canals were used for this study. In TFC group, TF-adaptive ML-1 (25/.08 size) files were used to prepare the canals under continuous rotation 500 rpm/4.0 Ncm. In TFA group, TF-adaptive ML-1 (25/.08 size) files were used to prepare the canals under adaptive movement. After preparing each artificial canal, TF files were observed under dental microscope for assessing existence of unwinding, distortion, and fracture. If unwinding of flute was observed, the number of artificial canals until unwinding of flute occurs was recorded. Required time until instruments reach working length and distance of unwinded portion of files from D0 were measured. All test results were conducted by Mann-Whitney U test at a 0.05 level of significance. Results: No Ni-Ti instrument's separation was observed. Number of resin blocks until file unwinding happens and working time was significantly high in TFA group compared to TF group. Distance of distortion from D0 didn't show significant difference between TFA, TF groups. Conclusion: The number of resin blocks prepared until unwinding happens and working time were significantly high in TFA group. The location of unwinding showed no significant difference between 2 groups. Adaptive movement increased the number of canals prepared until unwinding occurs and working time of twisted files.

A Study on the Application and Development of Automatic Design Program (자동설계프로그램 개발 및 활용에 관한 연구)

  • Lee, Sung-Soo;Kim, Min-Ju;Kim, Tae-Ho;Kim, Seung-Wook;Park, Jeung-Bo;Jeon, Eon-Chan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1179-1186
    • /
    • 2003
  • This study is described about development method and application of developed automatic design program. Automatic design program is the object-oriented program which based on mathematical algorithm. Automatic design program can do mathematic operation according to program contents. Also it can do modeling of shape. Shape modeling method is based on mathematical and geometrical algorithm. And created models can generate NC manufacturing program from CAM software. Also STL file format that is changed form created models can do RP manufacturing.

  • PDF

Land Cover Classification of Multi-functional Administrative City for Hazard Mitigation Precaution (행정중심복합도시 재해경감대책을 위한 토지피복분류)

  • Han, Seung-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • In this study, land cover classification and NDVI evaluation for hazard mitigation precaution are carried out in surrounding areas of Yeongi-gun, Chungcheongnam-do ($132\;km^2$) where a project for multi-functional administrative city is promoted by government. Image acquired from KOMPSAT 2, LANDSAT and ASTER is utilized and comparative evaluation on limitation in classification based on resolution was carried out. The area mainly consists of arable land including mountains, rice fields, ordinary fields, etc thus special attention was paid to the classification of rice fields and ordinary fields. For the classification of image acquired from KOMPSAT 2, segmentation technique for classification of high-resolution image was applied. To evaluate the accuracy of the classification, field investigation was conducted to examine the sample and it was compared with the land usage and classification of land category in land ledger of Korea. Acquired results were made into theme map in shape file format and it would be of great help in decision making of policy for the future-oriented development plan of multi-functional administrative city.

Micro-computed tomographic assessment of the shaping ability of the One Curve, One Shape, and ProTaper Next nickel-titanium rotary systems

  • Tufenkci, Pelin;Orhan, Kaan;Celikten, Berkan;Bilecenoglu, Burak;Gur, Gurkan;Sevimay, Semra
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.30.1-30.11
    • /
    • 2020
  • Objectives: This micro-computed tomographic (CT) study aimed to compare the shaping abilities of ProTaper Next (PTN), One Shape (OS), and One Curve (OC) files in 3-dimensionally (3D)-printed mandibular molars. Materials and Methods: In order to ensure standardization, 3D-printed mandibular molars with a consistent mesiobuccal canal curvature (45°) were used in the present study (n = 18). Specimens were instrumented with the OC, OS, or PTN files. The teeth were scanned pre- and post-instrumentation using micro-CT to detect changes of the canal volume and surface area, as well as to quantify transportation of the canals after instrumentation. Two-way analysis of variance was used for statistical comparisons. Results: No statistically significant differences were found between the OC and OS groups in the changes of the canal volume and surface area before and after instrumentation (p > 0.05). The OC files showed significantly less transportation than the OS or PTN systems for the apical section (p < 0.05). In a comparison of the systems, similar values were found at the coronal and middle levels, without any significant differences (p > 0.05). Conclusions: These 3 instrumentation systems showed similar shaping abilities, although the OC file achieved a lesser extent of transportation in the apical zone than the OS and PTN files. All 3 file systems were confirmed to be safe for use in mandibular mesial canals.

Development of Scaffold Fabrication System using Multi-axis RP Software Technique (다축 RP 소프트웨어 기술을 이용한 스캐폴드 제조 장비 개발)

  • Park, Jung-Whan;Lee, Jun-Hee;Cho, Hyeon-Uk;Lee, Su-Hee;Park, Su-A;Kim, Wan-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.33-40
    • /
    • 2012
  • The scaffold serves as 3D substrate for the cells adhesion and mechanical support for the newly grown tissue by maintaining the 3D structure for the regeneration of tissue and organ. In this paper, we proposed integrated scaffold fabrication system using multi-axis rapid prototyping (RP) technology. It can fabricate various types of scaffolds: arbitrary sculptured shape, primitive shape, and tube shape scaffolds by layered dispensing biocompatible/ biodegradable polymer strands in designated patterns. In order to fabricate the 3D scaffold, we need to generate the plotting path way for the scaffold fabrication system. We design a data processing program - scaffold plotting software, which can convert the 3D STL file, primitive and tube model images into the NC code for the system. Finally, we fabricated the customized 3D scaffolds with high accuracy using the plotting software and the fabrication system.

Fabrication of 3-Dimensional Microstructures using Digital Micromirror Device (Digital Micromirror Device 를 이용한 3차원 마이크로구조물 제작)

  • Choi, Jae-Won;Ha, Young-Myoung;Choi, Kyung-Hyun;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.116-125
    • /
    • 2006
  • MEMS and LIGA technologies have been used for fabricating microstructures, but their shape is not 3D because of difficulty for preparation of many masks. To fabricate 3D microstructures, microstereolithography technology based on Digital Micromirror Device($DMD^{TM}$) was introduced. It has no need of masks and is capable of fabricating high aspect ratio microstructures. In this technology, STL file is the standard format as the same of conventional rapid prototyping system, and 3D parts are fabricated by layer-by-layer according to 2D section sliced from STL file. The UV light source is illuminated to DMD which makes bitmap images of 2D section, and they are transferred and focused on resin surface. In this paper, we addressed optical design of microstereolithography system in consideration of light path according to DMD operation and image-forming on the resin surface using optical design program. To verify the performance of implemented microstereolithography system, 3D microstructures with complexity and high aspect ratio were fabricated.

Development of a System to Convert a 3D Mesh Model in STL Format into OBJ Format (STL 3D 형식의 메쉬 모델을 형식으로 OBJ 변환하는 시스템 개발)

  • Yeo, Changmo;Park, Chanseok;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • The 3D mesh model is used in various fields, such as virtual reality, shape-based searching, 3D simulation, reverse engineering, 3D printing, and laser scanning. There are various formats for the 3D mesh model, but STL and OBJ are the most typical. Since application systems support different 3D mesh formats, developing technology for converting 3D mesh models from one format into another is necessary to ensure data interoperability among systems. In this paper, we propose a method to convert a 3D mesh model in STL format into the OBJ format. We performed the basic design of the conversion system and developed a prototype, then verified the proposed method by experimentally converting an STL file into an OBJ file for test cases using this prototype.

Development of 3D simulator for biped robot (이족 보행 로보트를 위한 3차원 모의 실험기의 개발)

  • 김민수;이보희;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.928-931
    • /
    • 1996
  • It is necessary to develop the simulator for the test of stability and torque before the walking experiment of biped robot, because a robot may be damaged in an actual experiment. This thesis deals with the development of three-dimensional simulator for improving efficiency and safety during development and experimentation. The simulator is composed of three parts-solving dynamics, rendering pictures and communicating with the robot. In the first part, the D-H parameter and parameter of links can be loaded from the file and edited in the program. The results are obtained by using the Newton-Euler method and are stored in the file. Through the above process, the proper length of link and driving force can be found by using simulator before designing the robot. The second part is organized so that the user can easily see a specific value or a portion he wants by setting viewing parameters interactively. A robot is also shown as a shaded rendering picture in this part. In the last part, the simulator sends each desired angle of joints to the robot controller and each real angle of joints is taken from the controller and passed to the second part. The safety of the experiment is improved by driving the robot after checking whether the robot can be actuatable or not and whether the ZMP is located within the sole of the foot or not for a specific gait. The state of the robot can be easily grasped by showing the shaded rendering picture which displays the position of the ZMP, the driving force and the shape of robot.

  • PDF