• Title/Summary/Keyword: Shape and Function

Search Result 2,528, Processing Time 0.036 seconds

Proposal of Makeup's Function on the Metaverse Digital Platform - Focusing on Zepeto - (메타버스 디지털 플랫폼의 메이크업 기능 제안 - 제페토를 중심으로 -)

  • Se Mi Nam;Eun Sil Kim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.739-744
    • /
    • 2023
  • With the popularization of 5G networks and the development of AI (artificial intelligence) technology, Metaverse, which creates production capacity by combining virtual space and reality, is attracting attention. In this study, we searched for makeup applications with more than 100 million downloads from October 11, 2020 to November 3, 2020 through the Google Play Store. As a result of the search, four applications were found: YouCam Makeup, YouCam Perfect, Beauty Plus, and Sweet Snap. Based on the functions provided by the four applications, we attempted to suggest makeup functions applicable to Zepeto's avatar. Functions for the eyes (eyeliner, eyelashes, mascara, eye shadow, eye shape, eyebrow shape, lenses, double eyelids), functions for the nose (nose shape), functions for the mouth (lipstick, lip shape, smile function) ) Functions corresponding to the facial contour (contour, skin foundation, blusher, shading, highlighter, face painting, theme makeup) and functions corresponding to the body (body adjustment) were proposed. This study is the first in the beauty field to propose a method of applying the functions of the Metaverse platform as the importance of digital platforms is highlighted, and is the first to propose a makeup function applied to the Metaverse so that it can be used as important basic data in the future.

Prediction of Spectral Acceleration Response Based on the Statistical Analyses of Earthquake Records in Korea (국내 지진기록의 통계적 분석에 기반한 스펙트럴 가속도 응답 예측기법)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • This study suggests a prediction model of ground motion spectral shape considering characteristics of earthquake records in Korea. Based on the Graizer and Kalkan's prediction procedure, a spectral shape model is defined as a continuous function of period in order to improve the complex problems of the conventional models. The approximate spectral shape function is then developed with parameters such as moment magnitude, fault distance, and average shear velocity of independent variables. This paper finally determines estimator coefficients of subfunctions which explain the corelation among the independent variables using the nonlinear optimization. As a result of generating the prediction model of ground motion spectral shape, the ground motion spectral shape well estimates the response spectrum of earthquake recordings in Korea.

Calculation of Composite Desirability Function According to the Measurement Unit and Numerical Pattern of Characteristics in the Multiple Response Analysis (MRA에서 특성값의 측정단위와 수치형태에 따른 종합 만족도 산출 방법)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.565-572
    • /
    • 2009
  • This paper presents the optimization steps with weight and importance of estimated characteristic values in the multiresponse surface analysis(MRA). The research introduces the shape parameter of individual desirability function for relaxation and tighening of specification bounds. The study also proposes the combinded desirability function using arithmetic, geometric and harmonic means considering the measurement unit and numerical pattern.

  • PDF

An Upper bound Analysis of Metal Forming Processes by Nodal Velocity Fields using Shape Function (형상함수를 이용한 절점 속도장애 의한 소성가공 공정의 상계해석)

  • 김영호;배원병;박재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.210-216
    • /
    • 1994
  • The velocity fields can be composed by nodal points using shape function. Forging load and deformed profile are obtained by minimizing total energy consumption rate which is function of unknown velocities at each nodal points. The velocity and stremiline distribution can also be investigated at the deformation profile. The effectiveness of proposed method in this paper is demonstrated by comparing with those of FEM and experiment, that is the results of upset forging problem. Obtained results are compared with FEM and experiment and fairly good agreement is found between them.

  • PDF

Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation (고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석)

  • 이상호;김효진;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF

A Study on the Characteristics of Software Reliability Model Using Exponential-Exponential Life Distribution (수명분포가 지수화-지수분포를 따르는 소프트웨어 신뢰모형 특성에 관한 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.3
    • /
    • pp.69-75
    • /
    • 2020
  • In this paper, we applied the shape parameters of the exponentialized exponential life distribution widely used in the field of software reliability, and compared the reliability properties of the software using the non-homogeneous Poisson process in finite failure. In addition, the average value function is also a non-decreasing form. In the case of the larger the shape parameter, the smaller the estimated error in predicting the predicted value in comparison with the true value, so it can be regarded as an efficient model in terms of relative accuracy. Also, in the larger the shape parameter, the larger the estimated value of the coefficient of determination, which can be regarded as an efficient model in terms of suitability. So. the larger the shape parameter model can be regarded as an efficient model in terms of goodness-of-fit. In the form of the reliability function, it gradually appears as a non-increasing pattern and the higher the shape parameter, the lower it is as the mission time elapses. Through this study, software operators can use the pattern of mean square error, mean value, and hazard function as a basic guideline for exploring software failures.

Reliability estimation and ratio distribution in a general exponential distribution

  • Lee, Chang-Soo;Moon, Yeung-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.623-632
    • /
    • 2014
  • We shall consider the estimation for the parameter and the right tail probability in a general exponential distribution. We also shall consider the estimation of the reliability P(X < Y ) and the skewness trends of the density function of the ratio X=(X+Y) for two independent general exponential variables each having different shape parameters and known scale parameter. We then shall consider the estimation of the failure rate average and the hazard function for a general exponential variable having the density function with the unknown shape and known scale parameters, and for a bivariate density induced by the general exponential density.

DESCRIPTIONS OF ATTACK ANGLE AND IDEAL LIFT COEFFICIENT FOR VARIOUS AIRFOIL PROFILES IN WIND TURBINE BLADE

  • JAEGWI GO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.75-86
    • /
    • 2023
  • The angle of attack is highly sensitive to pitch point in the airfoil shape and the decline of pitch point value induces smaller angle of attack, which implies that airfoil profile possessing closer pitch point to the airfoil tip reacts more sensitively to upcoming wind. The method of conformal transformation functions is employed for airfoil profiles and airfoil surfaces are expressed with a trigonometric series form. Attack angle and ideal lift coefficient distributions are investigated for various airfoil profiles in wind turbine blade regarding conformal transformation and pitch point. The conformed angle function representing the surface angle of airfoil shape generates various attack angle distributions depending on the choice of surface angle function. Moreover, ideal attack angle and ideal lift coefficient are susceptible to the choice of airfoil profiles and uniform loading area. High ideal attack angle signifies high pliability to upcoming wind, and high ideal lift coefficient involves high possibility to generate larger electric energy. According to results obtained pitch point, airfoil shape, uniform loading area, and the conformed airfoil surface angle function are crucial factors in the determination of angle of attack.

Shape recovery and extraction the reflection properties of hybrid reflectance surface(II) (혼성 반사면의 반사 특성 추출 및 형상 복구(II))

  • 김태은;최종수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.21-29
    • /
    • 1997
  • In this paper, we propose a new approach for recovering 3-D shape and extracting the reflectance properties of surface from intensity images. Photometric stereo method(PSM) is genrally based on the direct illumination. In this paper, the reflectance function is derived by interoduceing the indirect diffuse illumination in PSM and then applied to hybrid reflectance model which consists of two components; the lambertian and the specular reflectance. Under the hybrid reflectance model and the indirect diffuse illumination circumstance, the reflectance properties of sample surface can be extracting by normal sampler and then 3-D shape of an object can be recovered based on extracting reflectance properties. This method is rapid because of using the reference table and simplifies the restriction condition about the reflectance function existing in prior studies. Th erecovery efficiency in our method is better than that in prior studies. Also, this method is applied to various types of surfaces by defining general reflectance function.

  • PDF

A Study on the Compensation of Blood Pressure Caused by the Change of Arterial Pressure Shape (동맥압 형태변화에 따른 혈압 보정에 관한 연구)

  • Lim, S.S.;Park, K.L.;Lee, K.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.177-178
    • /
    • 1998
  • This paper is a study on compensation for error in estimation of mean pressure according to the change of arterial pressure shape. Because arterial pressure shape affects the mean pressure and blood volume which are important factors for measurement of blood pressure(BP), change of arterial pressure shape cause BP measurement error. In order to solve this problem, we add the compensation function C($\alpha$), depending on arterial pressure shape, to mathematical oscillometric model. Consequently, we could accurately estimate the blood pressure by correcting of the error using compensation function.

  • PDF